3.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A,ω>0,|ϕ|<\frac{π}{2})$的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)為$P(\frac{1}{3},2)$,在y軸右側(cè)與x軸的第一個(gè)交點(diǎn)為$R(\frac{5}{6},0)$.求函數(shù)f(x)的解析式.

分析 由題意可得A,可求函數(shù)周期T,由周期公式可求ω,將點(diǎn)$P(\frac{1}{3},2)$代入解析式,解得φ,從而可求函數(shù)y的解析式.

解答 解:由題意,A=2,$\frac{T}{4}=\frac{5}{6}-\frac{1}{3}=\frac{1}{2}$,
所以T=2,
故$\frac{2π}{ω}=2$,解得ω=π,
所以f(x)=2sin(πx+φ),
將點(diǎn)$P(\frac{1}{3},2)$代入上式,
解得$φ=\frac{π}{6}$,
所以函數(shù)f(x)的解析式為:$f(x)=2sin({πx+\frac{π}{6}})$.

點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象和性質(zhì),屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若$\frac{a-b+c}{c}$=$\frac{a+b-c}$,則$\frac{b+c}{a}$的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為了調(diào)查中學(xué)生課外閱讀古典文學(xué)名著的情況,某校學(xué)生會(huì)從男生中隨機(jī)抽取了50人,從女生中隨機(jī)抽取了60人參加古典文學(xué)名著知識(shí)競(jìng)賽,統(tǒng)計(jì)數(shù)據(jù)如表所示,經(jīng)計(jì)算K2≈8.831,則測(cè)試成績是否優(yōu)秀與性別有關(guān)的把握為( 。
優(yōu)秀非優(yōu)秀總計(jì)
男生351550
女生253560
總計(jì)6050110
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函f(x)=sin(2x-$\frac{π}{6}$)-cos2x.
(Ⅰ)求函數(shù)f(x)的最小正周期、最大值及取得最大值時(shí)x的集合;
(Ⅱ)設(shè)△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若$f(\frac{B}{2})=-\frac{{\sqrt{3}}}{2}$,b=1,$c=\sqrt{3}$,且a>b,求角B和角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x
(1)當(dāng)a=1時(shí),解不等式f(x)>7;
(2)若對(duì)任意x∈[0,+∞),總有f(x)≤3成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.cos(-$\frac{17}{4}$π)+sin(-$\frac{17}{4}$π)的值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a>0,曲線f(x)=2ax2-$\frac{1}{ax}$在點(diǎn)(1,f(1))處的切線的斜率為k,則當(dāng)k取最小值時(shí)a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,焦距為2c(c>0),拋物線y2=2cx的準(zhǔn)線交雙曲線左支于A,B兩點(diǎn),且∠AOB=120°(O為坐標(biāo)原點(diǎn)),則該雙曲線的離心率為( 。
A.$\sqrt{3}+1$B.2C.$\sqrt{2}+1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≤0\\ x>0\\ y≤2\end{array}\right.$則$\frac{2y}{2x+1}$的取值范圍是[$\frac{4}{3}$,4].

查看答案和解析>>

同步練習(xí)冊(cè)答案