分析 求出函數(shù)的導(dǎo)數(shù),可得切線的斜率,由點(diǎn)斜式方程可得切線的方程.
解答 解:y=sin(x+$\frac{π}{3}$)的導(dǎo)數(shù)為y′=cos(x+$\frac{π}{3}$),
可得曲線$y=sin({x+\frac{π}{3}})$在點(diǎn)$({0,\frac{{\sqrt{3}}}{2}})$處的切線斜率為k=cos$\frac{π}{3}$=$\frac{1}{2}$,
即有曲線$y=sin({x+\frac{π}{3}})$在點(diǎn)$({0,\frac{{\sqrt{3}}}{2}})$處的切線方程是y-$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$(x-0),
即為x-2y+$\sqrt{3}$=0.
故答案為:x-2y+$\sqrt{3}$=0.
點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用點(diǎn)斜式方程是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,1]∪(2,+∞) | B. | (-2,1)∪(2,+∞) | C. | (-∞,-2)∪[1,2) | D. | (-∞,-2]∪(1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 964 | B. | 1080 | C. | 1152 | D. | 1296 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25種 | B. | 60種 | C. | 90種 | D. | 150種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com