1.A={a|f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定義域為R},B={a|3a2+5a-2<0},則A∩B=( 。
A.(0,$\frac{4}{9}$)B.[0,$\frac{1}{3}$)C.(-2,0)D.($\frac{1}{3}$,$\frac{4}{9}$)

分析 先分別求出集合A和B,由此能求出A∩B.

解答 解:∵A={a|f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定義域為R}
={a|ax2+3ax+1>0的解集為R}
={a|$\left\{\begin{array}{l}{a>0}\\{△=9{a}^{2}-4a<0}\end{array}\right.$或a=0}={a|0≤a<$\frac{4}{9}$},
B={a|3a2+5a-2<0}={a|-2<a<$\frac{1}{3}$},
∴A∩B={a|0≤a<$\frac{1}{3}$}=[0,$\frac{1}{3}$).
故選:B.

點(diǎn)評 本題考查交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)數(shù)列{an}(n≥1,n∈N)滿足a1=2,a2=6,且(an+2-an+1)-(an+1-an)=2,若[x]表示不超過x的最大整數(shù),則[$\frac{2017}{{a}_{1}}$+$\frac{2017}{{a}_{2}}$+…+$\frac{2017}{{a}_{2017}}$]=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.河南多地遭遇年霾,很多學(xué)校調(diào)整元旦放假時間,提前放假讓學(xué)生們在家躲霾.鄭州市根據(jù)《鄭州市人民政府辦公廳關(guān)于將重污染天氣黃色預(yù)警升級為紅色預(yù)警的通知》,自12月29日12時將黃色預(yù)警升級為紅色預(yù)警,12月30日0時啟動Ⅰ級響應(yīng),明確要求“幼兒園、中小學(xué)等教育機(jī)構(gòu)停課,停課不停學(xué)”.學(xué)生和家長對停課這一舉措褒貶不一,有為了健康贊成的,有怕耽誤學(xué)習(xí)不贊成的,某調(diào)查機(jī)構(gòu)為了了解公眾對該舉措的態(tài)度,隨機(jī)調(diào)查采訪了50人,將調(diào)查情況整理匯總成如表:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
頻數(shù)510151055
贊成人數(shù)469634
(Ⅰ)請在圖中完成被調(diào)查人員年齡的頻率分布直方圖;
(Ⅱ)若從年齡在[25,35),[65,75]兩組采訪對象中各隨機(jī)選取2人進(jìn)行深度跟蹤調(diào)查,選中4人中不贊成這項舉措的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點(diǎn),E是AB的中點(diǎn),P是△ABC(包括邊界)內(nèi)任一點(diǎn),則$\overrightarrow{AD}$•$\overrightarrow{EP}$的取值范圍是[-9,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在($\sqrt{3}$x+$\root{3}{2}$)100展開式所得的x的多項式中,系數(shù)為有理數(shù)的項有( 。
A.16項B.17項C.24項D.50項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,直線l為4x-5y+40=0;直線l1為4x-5y+5=0,直線l2為4x-5y+m=0,l1與橢圓相交于A、B兩點(diǎn),求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.用向量法證明以下各題:
(1)三角形三條中線共點(diǎn);
(2)P是△ABC重心的充要條件是$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如果|cos θ|=$\frac{1}{5}$,$\frac{7π}{2}$<θ<4π,那么cos$\frac{θ}{2}$的值等于( 。
A.$\frac{\sqrt{10}}{5}$B.-$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{15}}{5}$D.-$\frac{\sqrt{15}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)f(x)是定義在R上周期為2的奇函數(shù),當(dāng)0≤x≤1時,f(x)=x2-x,則$f({-\frac{5}{2}})$=(  )
A.$-\frac{1}{4}$B.$-\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案