15.已知三角形的頂點(diǎn)分別為A(-1,3),B(3,2),C(1,0)
(1)求BC邊上高的長(zhǎng)度;
(2)若直線l過(guò)點(diǎn)C,且在l上不存在到A,B兩點(diǎn)的距離相等的點(diǎn),求直線l的方程.

分析 (1)由條件利用直線的斜率公式,用點(diǎn)斜式求得直線BC的方程,再利用點(diǎn)到直線的距離公式求得BC邊上高的長(zhǎng)度.
(2)由題意可得直線l垂直于線段AB,求得直線AB的斜率,用點(diǎn)斜式求得直線l的方程.

解答 解:(1)∵三角形的頂點(diǎn)分別為A(-1,3),B(3,2),C(1,0),
∴BC的斜率為$\frac{2-0}{3-1}$=1,故直線BC的方程為y-0=1•(x-1),即 x-y-1=0,
故BC邊上高的長(zhǎng)度即點(diǎn)A到直線BC的距離,即$\frac{|-1-3-1|}{\sqrt{{1}^{2}{+(-1)}^{2}}}$=$\frac{5\sqrt{2}}{2}$.
(2)∵直線l過(guò)點(diǎn)C,且在l上不存在到A,B兩點(diǎn)的距離相等的點(diǎn),∴直線l垂直于線段AB,
故直線l的斜率為$\frac{-1}{{K}_{AB}}$=$\frac{-1}{\frac{3-2}{-1-3}}$=4,故直線l的方程為y-0=4•(x-1),即4x-y-4=0.

點(diǎn)評(píng) 本題主要考查直線的斜率公式,用點(diǎn)斜式求直線的方程,點(diǎn)到直線的距離公式的應(yīng)用,兩條直線垂直的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知實(shí)數(shù)x,y滿足3x2+2y2=6x,則x2+y2的最大值是(  )
A.$\frac{9}{2}$B.4C.5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(α)=$\frac{{sin({π-α})cos({2π-α})tan({-α+\frac{3π}{2}})}}{{cos({-π-α})}}$
(1)求f(-$\frac{31π}{3}$)
(2)若2f(π+α)=f($\frac{π}{2}$+α),求$\frac{sinα+cosα}{sinα-cosα}$+cos2α
(3)若f(α)=$\frac{3}{5}$,求sinα,cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.對(duì)具有線性相關(guān)關(guān)系的變量x,y,測(cè)得一組數(shù)據(jù)如下:
x24568
y2040607080
根據(jù)以上數(shù)據(jù),利用最小二乘法得它們的回歸直線方程為$\stackrel{∧}{y}$=10.5x+$\stackrel{∧}{a}$,據(jù)此模型來(lái)預(yù)測(cè)當(dāng)x=20時(shí),y的估計(jì)值為211.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖,若正四棱錐P-ABCD的底面邊長(zhǎng)為2,斜高為$\sqrt{5}$,則該正四棱錐的體積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列說(shuō)法正確的是( 。
A.若$\overrightarrow{a}$,$\overrightarrow$都是單位向量,則$\overrightarrow{a}$=$\overrightarrow$
B.方向相同或相反的非零向量叫做共線向量
C.若$\overrightarrow a\;∥\;\overrightarrow b$,$\overrightarrow b\;∥\;\overrightarrow c$,則$\overrightarrow a\;∥\;\overrightarrow c$不一定成立
D.若$\overrightarrow{AB}=\overrightarrow{DC}$,則A,B,C,D四點(diǎn)構(gòu)成一個(gè)平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在平面直角坐標(biāo)系中,已知向量$\overrightarrow{a}$=(-1,2),又點(diǎn)A(8,0),B(n,t),C(ksinθ,t)(0$≤θ≤\frac{π}{2}$).
(1)若$\overrightarrow{AB}$$⊥\overrightarrow{a}$且|$\overrightarrow{AB}$|=$\sqrt{5}$|$\overrightarrow{OA}$|,求向量$\overrightarrow{OB}$;
(2)若向量$\overrightarrow{AC}$與向量$\overrightarrow{a}$共線,常數(shù)k>0,當(dāng)tsinθ取最大值為4時(shí),求$\overrightarrow{OA}$$•\overrightarrow{OC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知向量$\overrightarrow a=(\sqrt{3}sinωx,cosωx),\overrightarrow b=(cosωx,-cosωx),(ω>0)$,函數(shù)f(x)=$\overrightarrow a•\overrightarrow b+\frac{1}{2}$的圖象的兩相鄰對(duì)稱軸間的距離為$\frac{π}{4}$.
(1)求ω的值;
(2)若$x∈(\frac{7π}{24},\frac{5π}{12})$,f(x)=-$\frac{3}{5}$,求cos4x的值;
(3)是否存在實(shí)數(shù)a使得af(x)+1≥0在$x∈[0,\frac{π}{4}]$上恒成立?若存在請(qǐng)求出a的取值,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在同一直角坐標(biāo)系中,函數(shù)f(x)=xa(x≥0),g(x)=logax的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案