【題目】為了增強(qiáng)環(huán)保意識(shí),某社團(tuán)從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

40

20

60

女生

20

30

50

總計(jì)

60

50

110

(1)試判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān);

(2)為參加市舉辦的環(huán)保知識(shí)競(jìng)賽,學(xué)校舉辦預(yù)選賽,現(xiàn)在環(huán)保測(cè)試優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,已知在環(huán)保測(cè)試中優(yōu)秀的同學(xué)通過(guò)預(yù)選賽的概率為,若隨機(jī)變量表示這3人中通過(guò)預(yù)選賽的人數(shù),求的分布列與數(shù)學(xué)期望.

附:

0.500

0.400

0.100

0.010

0.001

0.455

0.708

2.706

6.635

10.828

【答案】1)有%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān);(2)分布列見(jiàn)解析,

【解析】試題分析:(1)利用公式計(jì)算得,故有把握;(2的可能取值為,且滿足二項(xiàng)分布,由此求得分布列和期望.

試題解析:

1

因?yàn)?/span>

所以有99%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān).

2的可能取值為0,12,3

,

所以的分布列為:

X

0

1

2

3

P





因?yàn)?/span>

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列各式的值:

(1);

(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司即將推車一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買意愿的問(wèn)卷調(diào)查,若得分低于60分,說(shuō)明購(gòu)買意愿弱;若得分不低于60分,說(shuō)明購(gòu)買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買該款手機(jī)與年齡有關(guān)?

購(gòu)買意愿強(qiáng)

購(gòu)買意愿弱

合計(jì)

20~40歲

大于40歲

合計(jì)

(2)從購(gòu)買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為,求的分布列和數(shù)學(xué)期望.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),求證:無(wú)論實(shí)數(shù)取什么值都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面給出四種說(shuō)法:

①用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小,說(shuō)明模型的擬合效果越好;

②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;

③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p

④回歸直線一定過(guò)樣本點(diǎn)的中心( ).

其中正確的說(shuō)法有( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求證:當(dāng)x>1時(shí),f(x)>0成立;

(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)-f(x)=2x,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓為參數(shù)), 上的動(dòng)點(diǎn),且滿足為坐標(biāo)原點(diǎn)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,點(diǎn)的極坐標(biāo)為.

(1)求線段的中點(diǎn)的軌跡的普通方程;

(2)利用橢圓的極坐標(biāo)方程證明為定值,并求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案