10.在${(\frac{x}{2}-\frac{1}{{\root{3}{x}}})^n}$的二項(xiàng)展開式中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則此展開式中各項(xiàng)系數(shù)絕對(duì)值之和為( 。
A.${(\frac{1}{2})^9}$B.${(\frac{3}{2})^9}$C.${(\frac{1}{2})^8}$D.${(\frac{3}{2})^8}$

分析 根據(jù)二項(xiàng)展開式中只有第5項(xiàng)的二項(xiàng)式系數(shù)最大知n=8;再求展開式中各項(xiàng)系數(shù)絕對(duì)值之和.

解答 解:在${(\frac{x}{2}-\frac{1}{{\root{3}{x}}})^n}$的二項(xiàng)展開式中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,
∴n=8;
∴此展開式中各項(xiàng)系數(shù)絕對(duì)值之和為${(\frac{1}{2}+1)}^{8}$=${(\frac{3}{2})}^{8}$.
故選:D.

點(diǎn)評(píng) 本題考查了二項(xiàng)展開式中二項(xiàng)式系數(shù)與所有項(xiàng)系數(shù)的絕對(duì)值計(jì)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,所有棱長(zhǎng)都相等的直四棱柱ABCD-A′B′C′D′中,B′D′中點(diǎn)為E′
(Ⅰ)證明:AE′∥平面BC′D;
(Ⅱ)求證:BD⊥AE′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}{{y}^{2}-{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$內(nèi)的任意一點(diǎn),其中a>0,當(dāng)該區(qū)域的面積為4時(shí),z=2x-y的最大值是( 。
A.6B.0C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合P={(x,y)|y=x2},Q={(x,y)|y=2x+3},則P∩Q=(  )
A.{-1,3}B.{(-1,1),(3,9)}C.{1,-3}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若正數(shù)x、y滿足2x+y=1,則xy的范圍是$(0,\frac{1}{8}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=\left\{\begin{array}{l}(2-a)x+1,x<1\\{a^x},x≥1\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么a的取值范圍是( 。
A.(1,2)B.(1,$\frac{3}{2}$]C.[$\frac{3}{2}$,2)D.($\frac{3}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知0<a<b<1,求證:
(Ⅰ)a+b<1+ab;
(Ⅱ)$\sqrt{a}-\sqrt<\sqrt{a+b}-\sqrt{b+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.當(dāng)0<x<$\frac{1}{2}$時(shí),4x<logax,則a的取值范圍是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.($\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{2}}{2}$,1)D.(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}滿足a2=2,a6+a8=14.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)記bn=$\frac{{a}_{n}}{{2}^{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案