A. | 6 | B. | 0 | C. | 2 | D. | 2$\sqrt{2}$ |
分析 由約束條件作出可行域,求出使可行域面積為4的a值,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合可得最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案.
解答 解:由$\left\{\begin{array}{l}{{y}^{2}-{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$作出可行域如圖,
由圖可得A(a,-a),B(a,a),
由S△OAB=$\frac{1}{2}$•2a•a=4,得a=2.
∴A(2,-2),
化目標函數(shù)z=2x-y為y=2x-z,
∴當y=2x-z過A點時,z最大,等于2×2-(-2)=6.
故選:A.
點評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{13}{3}$ | B. | $\frac{13}{2}$ | C. | 13 | D. | $\frac{39}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)∪[2,3) | B. | [-1,2) | C. | (-∞,-1)∪[2,3)∪(3,+∞) | D. | (-∞,-1)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1) | B. | (-1,2) | C. | (-∞,-1)∪(2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2211 | B. | ($\sqrt{2}$)211 | C. | 4211 | D. | 2105 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${(\frac{1}{2})^9}$ | B. | ${(\frac{3}{2})^9}$ | C. | ${(\frac{1}{2})^8}$ | D. | ${(\frac{3}{2})^8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-3i | B. | 1+3i | C. | -1-3i | D. | -1+3i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com