12.設全集U=R,集合A={x|-1<x<3},B={x|x<1},則A∩(∁UB)=(  )
A.{x|1<x<3}B.{x|1≤x<3}C.{x|1<x≤3}D.{x|1≤x≤3}

分析 根據(jù)題意,由補集的意義可得集合∁UB,又由集合A,結合交集的定義計算可得A∩(∁UB),即可得答案.

解答 解:根據(jù)題意,B={x|x<1},則∁UB={x|x≥1},
又由集合A={x|-1<x<3},
則A∩(∁UB)={x|1≤x<3};
故選:B.

點評 本題考查集合的交并補的混合運算,關鍵是掌握集合交集、補集的幾何意義.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x3+$\frac{3}{2}$x2+mx在x=1處有極小值,g(x)=f(x)-$\frac{2}{3}$x3-$\frac{3}{4}$x2+x-alnx.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)是否存在實數(shù)a,對任意的x1、x2∈(0,+∞),且x1≠x2,有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{1}-{x}_{2}}$>1恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-3≤0}\\{x+y≥2}\\{x-y≥0}\end{array}\right.$,則z=x2+y2+2y+1的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知回歸直線方程$\widehat{y}$=1.2x+$\widehat$,樣本中心點為(3,4),則$\widehat$=(  )
A.0.2B.0.3C.0.4D.0.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.煙臺水果以“棲霞蘋果、萊陽梨、福山大櫻桃”聞名,現(xiàn)從市農科院培育的櫻桃樹苗中隨機抽取100棵作為樣本,測得這些樹苗的株高(單位:cm)并繪制頻率分布直方圖如圖所示
(1)由頻率分布直方圖可認為,這些櫻桃樹樹苗的株高X服從正態(tài)分布
N(μ,σ2),其中μ近似為樣本平均數(shù)$\overline{x}$,σ近似為樣本方差s2,利用該正態(tài)分布,求P(79.5<X<104.5)
(2)某果農買了20棵這種櫻桃樹苗,記ξ表示這20棵樹苗株高位于區(qū)間(79.5 104.5)的棵數(shù),利用(1)的結果,求Eξ(結果保留整數(shù))
(3)若株高位于區(qū)間(79.5,104.5)的樹苗視為“優(yōu)良”,并以(2)中的Eξ為“優(yōu)良”棵數(shù).從這20棵樹苗中任取3棵,記η為“優(yōu)良”的棵數(shù),求η的分布列和數(shù)學期望.
附:$\sqrt{39}$≈6.25,若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.6827,P(μ-2σ<Z<μ+2σ)=0.9545.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A,B,C所對應的邊分別為a,b,c,a-b=bcosC.
(1)求證:sinC=tanB
(2)若a=2,b=2,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,角A,B,C的對邊分別為a,b,c,已知$\frac{1}{2}$a=b,sinC=$\frac{sinA+sinB}{2}$.
(1)求cosA的值;
(2)若3S△ABC=8$\sqrt{15}$,求△ABC中的c邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}的所有項均為正值,其前n項積為Tn=2${\;}^{\frac{n(n-1)}{2}}$
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)求和:Sn=a1+2a2+…+(n+2)an+2-(n+1)an+3-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.與命題“若a∈M,則b∈M”等價的命題是( 。
A.若a∈M,則b∉MB.若b∈M,則a∉MC.若b∉M,則a∈MD.若b∉M,則a∉M

查看答案和解析>>

同步練習冊答案