【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若存在正數(shù)a,使得時(shí),,求實(shí)數(shù)k的取值范圍.
【答案】(1)時(shí),在上遞增;時(shí),在上遞減,在上遞增.(2)或.
【解析】
(1)求得的導(dǎo)函數(shù),將分成和兩種情況,討論的單調(diào)性.
(2)將分成、和三種情況,結(jié)合(1)中的結(jié)論,化簡(jiǎn),然后利用構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù),求得實(shí)數(shù)的取值范圍.
(1).當(dāng)時(shí),,在上遞增.當(dāng)時(shí),令解得,當(dāng)時(shí),,當(dāng)時(shí),,所以在上遞減,在上遞增.
(2),
①當(dāng)時(shí),在上單調(diào)遞增,且,所以,所以,即,也即,令,則.因?yàn)?/span>,,所以,所以,所以在上遞增,,所以存在,在上成立.
②當(dāng)時(shí),,由(1)知在上遞減,在上遞增,所以在上遞增,,所以,所以,即,也即.令,則.令,解得,因?yàn)?/span>,所以,所以在上遞減,,不符合.
③當(dāng)時(shí),.因?yàn)?/span>在上遞減,在上遞增,存在,時(shí),,所以,要使,只需,即.令,則,令,得.當(dāng)時(shí),,在上遞增,,不成立.當(dāng)時(shí),,存在,使得在上遞減,,成立.
綜上所述,或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水產(chǎn)養(yǎng)殖戶在魚成熟時(shí),隨機(jī)從網(wǎng)箱中捕撈100尾魚,其質(zhì)量分別在[4,4.5),[4.5.5),[5.5.5),[5.5,6),[6,6.5),[6.5,7](單位:斤)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示
(1)現(xiàn)按分層抽樣的方法,從質(zhì)量為[4.5,5),[5,5.5)的魚中隨機(jī)抽取5尾,再?gòu)倪@5尾中隨機(jī)抽取2尾,記隨機(jī)變量X表示質(zhì)量在[4.5,5)內(nèi)的魚的尾數(shù),求X的分布列及數(shù)學(xué)期望.
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,該養(yǎng)殖戶還未捕撈的魚大約還有1000尾,現(xiàn)有兩個(gè)方案:
方案一:所有剩余的魚現(xiàn)在賣出,質(zhì)量低于5.5斤的魚售價(jià)為每斤10元,質(zhì)量高于5.5斤的魚售價(jià)為每斤12元
方案二:一周后所有剩余的魚逢節(jié)日賣出,假設(shè)每尾魚的質(zhì)量不變,魚的數(shù)目不變,質(zhì)量低于5.5斤的魚售價(jià)為每斤15元,這類魚養(yǎng)殖一周的費(fèi)用是平均每尾22元;質(zhì)量高于5.5斤的魚售價(jià)為每斤16元,這類魚養(yǎng)殖一周的費(fèi)用是平均每尾24元通過計(jì)算確定水產(chǎn)養(yǎng)殖戶選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),是的導(dǎo)函數(shù).
(1)若,求的最值;
(2)若,證明:對(duì)任意的,存在,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若為的極值點(diǎn),求實(shí)數(shù)的值;
(2)若在上是單調(diào)增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,﹣3),點(diǎn)M滿足|MA|=2|MO|.
(1)求點(diǎn)M的軌跡方程;
(2)若圓C:(x﹣c)2+(y﹣c+1)2=1,判斷圓C上是否存在符合題意的M;
(3)設(shè)P(x1,y1),Q(x2,y2)是點(diǎn)M軌跡上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P關(guān)于點(diǎn)(0,1)的對(duì)稱點(diǎn)為P1,點(diǎn)P關(guān)于直線y=1的對(duì)稱點(diǎn)為P2,如果直線QP1,QP2與y軸分別交于(0,a)和(0,b),問(a﹣1)(b﹣1)是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在(﹣1,1)上的奇函數(shù),且f(),
(1)確定函數(shù)的解析式;
(2)用定義法判斷函數(shù)的單調(diào)性;
(3)解不等式;f(t﹣1)+f(t)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若acos2+ccos2=b.
(1)求證:a,b,c成等差數(shù)列;
(2)若∠B=60°,b=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為常數(shù)).
(1)討論的單調(diào)性;
(2)是的導(dǎo)函數(shù),若存在兩個(gè)極值點(diǎn),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若直線是函數(shù)圖象的切線,求的最小值;
(3)當(dāng)時(shí),若直線是函數(shù)圖象有兩個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com