分析 先g(x)=x2+ax+b,進(jìn)而可知g(x)的各項(xiàng)系數(shù)和為1+a+b=g(1),根據(jù)題意根據(jù)2[g(1)]2-g(1)-45=0求得g(1),則答案可得.
解答 解:f(g(x))=2[g(x)]2-g(x)+1=2x4+4x3+13x2+11x+16,
依題意,可設(shè)g(x)=x2+ax+b,
∴g(x)的各項(xiàng)系數(shù)和為1+a+b=g(1);而2[g(1)]2-g(1)+1=2•14+4•13+13•12+11•1+16,
∴2[g(1)]2-g(1)-45=0.
∴g(1)=-$\frac{9}{2}$或5
∵g(x)是各項(xiàng)系數(shù)均為整數(shù)的多項(xiàng)式,故g(1)不可能是分?jǐn)?shù),舍去-$\frac{9}{2}$,
∴g(1)=5,
∴g(x)的各項(xiàng)系數(shù)之和為5.
故答案為:5
點(diǎn)評(píng) 函數(shù)是高中數(shù)學(xué)的一條主線,因而在高考中占有極其重要的地位.本題是函數(shù)符號(hào)運(yùn)用的綜合題,需要學(xué)生具有一定的探究和想象能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | -7 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | e+$\frac{1}{e}$-2 | B. | e-$\frac{1}{e}$+2 | C. | e+$\frac{1}{e}$ | D. | e-$\frac{1}{e}$-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,1) | B. | (-1,+∞) | C. | (-∞,-1) | D. | (1.+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com