8.函數(shù)f(x)=$\left\{\begin{array}{l}{lg(x+1),x>0}\\{cos\frac{π}{2}x,x<0}\end{array}\right.$圖象上關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱的點(diǎn)有4對(duì).

分析 要求函數(shù)圖象上關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則有f(-x)=-f(x),轉(zhuǎn)化為方程根的個(gè)數(shù),再用數(shù)形結(jié)合法求解.

解答 解:當(dāng)x<0時(shí),函數(shù)f(x)=cos$\frac{π}{2}$x,
則關(guān)于原點(diǎn)對(duì)稱的圖象為y=-cos$\frac{π}{2}$x,x>0,
作出函數(shù)的圖象如圖:
當(dāng)x=10時(shí),y=lg11>1,
y=-cos5π=1,
則由圖象可知兩個(gè)圖象的交點(diǎn)有4個(gè),
故答案為:4.

點(diǎn)評(píng) 本題主要通過分段函數(shù)來考查函數(shù)奇偶性的應(yīng)用,同時(shí)還考查了學(xué)生作圖和數(shù)形結(jié)合的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下的列表:
喜愛打籃球不喜愛打籃球合計(jì)
男生20525
女生101525
合計(jì)302050
(1)用分層抽樣的方法在喜歡打藍(lán)球的學(xué)生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍(lán)球是否與性別有關(guān),計(jì)算出K2,你有多大的把握認(rèn)為是否喜歡打藍(lán)球與性別有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
下面的臨界值表供參考:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=\frac{e^x}{x+2}$,則f′(0)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx,g(x)=0.5x2-bx,(b為常數(shù)).
(1)函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線與函數(shù)g(x)的圖象相切,求實(shí)數(shù)b的值;
(2)若函數(shù)h(x)=f(x)+g(x)在定義域上不單調(diào),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖是某社區(qū)的部分規(guī)劃設(shè)計(jì)圖,住宅區(qū)一邊的邊界曲線記為C,步行街(寬度不計(jì))所在直線L與曲線C相切于點(diǎn)M,以點(diǎn)E為圓心,1百米為半徑的圓的四分之一為大型超市,為方便住宅區(qū)居民購物休閑,該社區(qū)計(jì)劃在步行街與大型超市之間鋪設(shè)一條連接道路AB(寬度不計(jì))以及修建花園廣場(chǎng).
根據(jù)相關(guān)數(shù)據(jù),某同學(xué)建立了平面直角坐標(biāo)系xOy,曲線C用函數(shù)模型y=ex-1+kx+b(k,b為常數(shù))擬合.并求得直線l:y=2x,M(1,2),E(2$\sqrt{5}$,0),單位:百米.點(diǎn)A在l上,點(diǎn)B在$\widehat{FG}$上
(1)求曲線C的方程和AB的最短距離;
(2)若過點(diǎn)A作AP垂直于x軸,垂足為P,在空地△APB內(nèi)截取一個(gè)面積最大的矩形,用來修建一個(gè)花園廣場(chǎng).要求矩形的一邊在AB上.在連接道路AB最短時(shí),求花園廣場(chǎng)的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.半徑為R的圓O內(nèi)有一個(gè)內(nèi)接正方形,現(xiàn)在向圓內(nèi)任意投小鏢,求鏢落在正方形內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知正四棱錐P-ABCD中,PA=AB=2,E,F(xiàn)分別是PB,PC的中點(diǎn),則異面直線AE與BF所成角的余弦值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)S是不等式x2-x-6≤0的解集,整數(shù)m、n∈S.
(1)求“m+n=0”的概率;
(2)設(shè)ξ=m2,求ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知g(x)是各項(xiàng)系數(shù)均為整數(shù)的多項(xiàng)式,f(x)=2x2-x+1,且滿足f(g(x))=2x4+4x3+13x2+11x+16,則g(x)的各項(xiàng)系數(shù)之和為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案