10.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且$f(x)=-{x^3}+3f'(2)x+\int_0^2{f(x)dx}$,則$\int_0^2{f(x)dx}$=-32.

分析 設(shè)$\int_0^2{f(x)dx}=a$,根據(jù)導(dǎo)數(shù)得運(yùn)算法則,求出函數(shù)f(x)的表達(dá)式,再根據(jù)定積分的計(jì)算法則即可求出

解答 解:設(shè)$\int_0^2{f(x)dx}=a$,則f(x)=-x3+3f'(2)x+a,所以,f'(x)=-3x2+3f'(2),
令x=2,求得f'(2)=6,故f(x)=-x3+18x+a,
因此,$\int_0^2{f(x)dx}=\int_0^2{(-{x^3}+18x+a)dx=(-\frac{1}{4}{x^4}+9{x^2}+ax)|_0^2=32+2a}$,
則有32+2a=a,得a=-32.
故答案為:-32.

點(diǎn)評(píng) 本題主要考查了導(dǎo)數(shù)的運(yùn)算法則和定積分的計(jì)算,屬于中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知正四棱錐P-ABCD中,PA=AB=2,E,F(xiàn)分別是PB,PC的中點(diǎn),則異面直線AE與BF所成角的余弦值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在正四面體P-ABC體積為V,現(xiàn)內(nèi)部取一點(diǎn)S,則$\frac{V}{3}<{V_{S-ABC}}<\frac{V}{2}$的概率為( 。
A.$\frac{37}{216}$B.$\frac{8}{27}$C.$\frac{91}{216}$D.$\frac{13}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知g(x)是各項(xiàng)系數(shù)均為整數(shù)的多項(xiàng)式,f(x)=2x2-x+1,且滿足f(g(x))=2x4+4x3+13x2+11x+16,則g(x)的各項(xiàng)系數(shù)之和為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.一輛汽車(chē)在筆直的公路上向前變速行駛,設(shè)汽車(chē)在時(shí)刻t的速度為v(t)=-t2+4,(t的單位:h,v的單位:km/h)則這輛車(chē)行駛的路程是$\frac{16}{3}$km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系中,已知兩定點(diǎn)E(1,0)、$G(6,\frac{3}{2})$,⊙C的方程為x2+y2-2mx+(10-2m)y+10m-29=0.當(dāng)⊙C的半徑取最小值時(shí):
(1)求出此時(shí)m的值,并寫(xiě)出⊙C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在異于點(diǎn)E的另外一個(gè)點(diǎn)F,使得對(duì)于⊙C上任意一點(diǎn)P,總有$\frac{{|{PE}|}}{{|{PF}|}}$為定值?若存在,求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明你的理由;
(3)在第(2)問(wèn)的條件下,求$μ=\frac{{4{{|{PG}|}^2}-{{|{PE}|}^2}-6|{PE}|}}{{2|{PG}|-|{PE}|-3}}-2|{PE}|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f(x)、g(x)都是定義在R上的函數(shù),g(x)≠0,f'(x)g(x)<f(x)g'(x),f(x)=axg(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,在有窮數(shù)列$\left\{{\frac{f(n)}{g(n)}}\right\}$(n=1,2,…,10)中,任意取前k項(xiàng)相加,則前k項(xiàng)和不小于$\frac{63}{64}$的k的取值范圍是( 。
A.[6,10]且k∈N*B.(6,10]且k∈N*C.[5,10]且k∈N*D.[1,6]且k∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知tan(π+α)=2.
(1)求$\frac{sinα+2cosα}{3sinα-cosα}$
(2)求4sin2α-3sinαcosα-5cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,三棱柱ABC-A1B1C1中,A1B⊥平面ABC,且AB⊥AC.
(1)求證:AC⊥BB1;
(2)若AB=AC=A1B=2,M為B1C1的中點(diǎn),求二面角M-AB-A1平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案