18.設(shè)α,β為銳角,且sin α=$\frac{\sqrt{5}}{5}$,cos β=$\frac{{3\sqrt{10}}}{10}$,則α+β的值為( 。
A.$\frac{3}{4}$πB.$\frac{5}{4}$πC.$\frac{π}{4}$D.$\frac{π}{4}或\frac{3π}{4}$

分析 利用同角三角函數(shù)的基本關(guān)系求得cosα、sinβ的值,再利用兩角和的余弦公式求得cos(α+β)=cosαcosβ-sinαsinβ的值,結(jié)合α+β的范圍,可得α+β的值.

解答 解:∵α,β為銳角,∴α+β∈(0,π),∵sin α=$\frac{\sqrt{5}}{5}$,cos β=$\frac{{3\sqrt{10}}}{10}$,
∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{2\sqrt{5}}{5}$,sinβ=$\sqrt{{1-cos}^{2}β}$=$\frac{\sqrt{10}}{10}$,
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{2\sqrt{5}}{5}$•$\frac{3\sqrt{10}}{10}$-$\frac{\sqrt{5}}{5}$•$\frac{\sqrt{10}}{10}$=$\frac{\sqrt{2}}{2}$,
故α+β=$\frac{π}{4}$,
故選:C.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和的余弦公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若{an}為等差數(shù)列,且a2+a5+a8=39,則a1+a2+…+a9的值為( 。
A.114B.117C.111D.108

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知A,B,C為銳角△ABC的內(nèi)角,$\overrightarrow{a}$=(sinA,sinBsinC),$\overrightarrow$=(1,-2),$\overrightarrow{a}$⊥$\overrightarrow$.
(1)tanB,tanBtanC,tanC能否構(gòu)成等差數(shù)列?并證明你的結(jié)論;
(2)求tanAtanBtanC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)U=R,A={x|x≤2,或x≥5},B=$\{x|\frac{2x-5}{x+2}<1\}$,C={x|a<x<a+1}
(1)求A∪B和(∁UA)∩B
(2)若B∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè){an}是各項(xiàng)為正數(shù)的等比數(shù)列,Sn是它的前n項(xiàng)和,已知a2a4=16,S3=7,則公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知{an}為等比數(shù)列,且${a_1}{a_{13}}=\frac{π}{6}$,則tan(a2a12)的值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.-$\sqrt{3}$C.$±\sqrt{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知曲線f(x)=$\frac{lo{g}_{2}(x+1)}{x+1}$(x>0)上有一點(diǎn)列Pn(xn,yn)(n∈N*),過(guò)點(diǎn)Pn在x軸上的射影是Qn(xn,0),且x1+x2+x3+…+xn=2n+1-n-2.(n∈N*)
(1)求數(shù)列{xn}的通項(xiàng)公式;
(2)設(shè)四邊形PnQnQn+1Pn+1的面積是Sn,求Sn;
(3)在(2)條件下,求證:$\frac{1}{{S}_{1}}$+$\frac{1}{2{S}_{2}}$+…+$\frac{1}{n{S}_{n}}$<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知7cos2α-sinαcosα-1=0,α∈($\frac{π}{4}$,$\frac{π}{2}$),求cos2α和$sin({2α+\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.對(duì)于銳角α,若$tanα=\frac{3}{4}$,則cos2α+2sin2α=( 。
A.$\frac{16}{25}$B.$\frac{48}{25}$C.1D.$\frac{64}{25}$

查看答案和解析>>

同步練習(xí)冊(cè)答案