圖1是一個(gè)正方體的表面展開圖,MN和PB是兩條面對角線,請?jiān)趫D2的正方體中將MN和PB畫出來,并就這個(gè)正方體解決下列問題
(1) 求證:MN//平面PBD; (2)求證:AQ平面PBD;
(3)求二面角P-DB-M的余弦值。
(1)只需證MN//BD;(2)只需證,。(3)。
解析試題分析:畫出MN和PB如圖所示
(1) 證明:在正方體ABCD-PMQN中
MN//BD MN//平面PBD
(2)證明:在正方體ABCD-PMQN中
同理可證 :
(3)解: 建立空間直角坐標(biāo)系如圖所示,設(shè)正方體的棱長為1
則 A(1,0,0), Q(0,1,1) , C(0,1,0)
由知平面PBD的一個(gè)法向量是
平面MBD的一個(gè)法向量是
二面角P-DB-M的余弦值為 .
考點(diǎn):正方體的的平面展開圖;線面平行的判定定理;線面垂直的判定定理;二面角。
點(diǎn)評:綜合法求二面角,往往需要作出平面角,這是幾何中一大難點(diǎn),而用向量法求解二面角無需作出二面角的平面角,只需求出平面的法向量,經(jīng)過簡單運(yùn)算即可,從而體現(xiàn)了空間向量的巨大作用.二面角的向量求法: ①若AB、CD分別是二面的兩個(gè)半平面內(nèi)與棱垂直的異面直線,則二面角的大小就是向量與的夾角; ②設(shè)分別是二面角的兩個(gè)面α,β的法向量,則向量的夾角(或其補(bǔ)角)的大小就是二面角的平面角的大小。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正四棱柱的底面邊長為2,.
(1)求該四棱柱的側(cè)面積與體積;
(2)若為線段的中點(diǎn),求與平面所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓錐中,為底面圓的兩條直徑 ,AB交CD于O,且,,為的中點(diǎn).
(1)求證:平面;
(2)求圓錐的表面積;求圓錐的體積。
(3)求異面直線與所成角的正切值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知一個(gè)四棱錐的三視圖如圖所示,其中,且,分別為、、的中點(diǎn)
(1)求證:PB//平面EFG
(2)求直線PA與平面EFG所成角的大小
(3)在直線CD上是否存在一點(diǎn)Q,使二面角的大小為?若存在,求出CQ的長;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,四棱錐中,平面,四邊形是矩形,,分別是,的中點(diǎn).若,。
(1)求證:平面;
(2)求直線平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖4平面四邊形ABCD中,AB=AD=,BC=CD=BD,設(shè).
(1)將四邊形ABCD的面積S表示為的函數(shù);
(2)求四邊形ABCD面積S的最大值及此時(shí)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分) 如圖,在平行四邊形中,,將沿折起到的位置,使平面平面.
(1)求二面角E-AB-D的大小;
(2)求四面體的表面積和體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,在長方體中,,,點(diǎn)在棱上移動(dòng).
⑴ 證明://平面;
⑵證明:⊥;
⑶ 當(dāng)為的中點(diǎn)時(shí),求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com