19.在平行四邊形ABCD中,AB=2,∠DAB=$\frac{2}{3}$π,E是BC的中點,$\overrightarrow{AE}•\overrightarrow{BD}$=2,則AD=( 。
A.1B.2C.3D.4

分析 設(shè)|$\overrightarrow{AD}$|=x>0.由向量的三角形法則可得$\overrightarrow{AE}$、$\overrightarrow{BD}$,代入$\overrightarrow{AE}$$•\overrightarrow{BD}$=2,利用數(shù)量積的運算性質(zhì)展開即可求得結(jié)果.

解答 解:如圖所示,
平行四邊形ABCD中,AB=2,∠DAB=$\frac{2}{3}$π,E是BC的中點,
設(shè)|$\overrightarrow{AD}$|=x>0,
∵$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BE}$=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{BC}$=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$,
$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$=-$\overrightarrow{AB}$+$\overrightarrow{AD}$,
∴$\overrightarrow{AE}$•$\overrightarrow{BD}$=($\frac{1}{2}$$\overrightarrow{AD}$+$\overrightarrow{AB}$)•($\overrightarrow{AD}$-$\overrightarrow{AB}$)
=$\frac{1}{2}$${\overrightarrow{AD}}^{2}$+$\frac{1}{2}$$\overrightarrow{AD}$•$\overrightarrow{AB}$-${\overrightarrow{AB}}^{2}$
=$\frac{1}{2}$x2+$\frac{1}{2}$x•2•cos$\frac{2π}{3}$-22
=$\frac{1}{2}$x2-$\frac{1}{2}$x-4=2,
化為x2-x-12=0,
∵x>0,解得x=4,
即AD=4.
故選:D.

點評 本題考查了平面向量的三角形法則以及數(shù)量積的運算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在(2x2-$\frac{1}{\sqrt{x}}$)6的展開式中,含x7的項的系數(shù)是240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若點P(sinθ,cosθ)在直線2x+y=0上,則tan2θ=( 。
A.$-\frac{4}{5}$B.$\frac{4}{3}$C.-$\frac{4}{3}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知動點M(x,y)到直線l:x=3的距離是它到點D(1,0)的距離的$\sqrt{3}$倍.
(1)求動點M的軌跡C的方程;
(2)設(shè)軌跡C上一動點T滿足:$\overrightarrow{OT}$=2λ$\overrightarrow{OP}$+3μ$\overrightarrow{OQ}$,其中P、Q是軌跡C上的點,且直線OP與OQ的斜率之積為-$\frac{2}{3}$.若N(λ,μ)為一動點,F(xiàn)1(-$\frac{\sqrt{5}}{6}$,0)、F2($\frac{\sqrt{5}}{6}$,0)為兩定點,求|NF1|+|NF2|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.2017年4月1日,國家在河北省白洋淀以北的雄縣、容城、安新3縣設(shè)立雄安新區(qū),這是繼深圳經(jīng)濟特區(qū)和上海浦東新區(qū)之后又一具有全國意義的新區(qū),是千年大計、國家大事,多家央企為了配合國家戰(zhàn)略支持雄安新區(qū)建設(shè),紛紛申請在新區(qū)建立分公司,若規(guī)定每家央企只能在雄縣、容城、安新3個片區(qū)中的一個片區(qū)設(shè)立分公司,且申請其中任一個片區(qū)設(shè)立分公司都是等可能的,每家央企選擇哪個片區(qū)相互之間互不影響且必須在其中一個片區(qū)建立分公司,向雄安新區(qū)申請建立分公司的任意4家央企中:
(1)求恰有2家央企申請在“雄縣”片區(qū)建立分公司的概率;
(2)用X表示這4家央企中在“雄縣”片區(qū)建立分公司的個數(shù),用Y表示在“容城”或“安新”片區(qū)建立分公司的個數(shù),記ξ=|X-Y|,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知圓x2+y2=4,直線l:y=x+b,若圓x2+y2=4上恰有4個點到直線l的距離都等于1,則b的取值范圍為( 。
A.(-1,1)B.[-1,1]C.$[{-\sqrt{2},\sqrt{2}}]$D.$({-\sqrt{2},\sqrt{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定義在R上的函數(shù)f(x)的周期為4,當(dāng)x∈[-2,0]時,f(x)=x3,且函數(shù)y=f(x+2)的圖象關(guān)于y軸對稱,則f(2017)=(  )
A.20173B.8C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)$f(x)=cos({ωx+\frac{π}{6}})$(ω>0)的最小正周期為π,則f(x)滿足( 。
A.在$({0,\frac{π}{3}})$上單調(diào)遞增B.圖象關(guān)于直線$x=\frac{π}{6}$對稱
C.$f({\frac{π}{3}})=\frac{{\sqrt{3}}}{2}$D.當(dāng)$x=\frac{5π}{12}$時有最小值-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,直線y=1與橢圓C的兩交點間距離為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,設(shè)R(x0,y0)是橢圓C上的一動點,由原點O向圓(x-x02+(y-y02=4引兩條切線,分別交橢圓C于點P,Q,若直線OP,OQ的斜率均存在,并分別記為k1,k2,求證:k1•k2為定值.
(Ⅲ)在(Ⅱ)的條件下,試問|OP|2+|OQ|2是否為定值?若是,求出該值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案