5.點P在雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的右支上,其左、右焦點分別為F1、F2,直線PF1與以坐標(biāo)原點O為圓心、a為半徑的圓相切于點A,線段PF1的垂直平分線恰好過點F2,則該雙曲線的漸近線的斜率為(  )
A.±$\frac{4}{3}$B.±$\frac{3}{4}$C.±$\frac{3}{5}$D.±$\frac{5}{3}$

分析 運(yùn)用線段的垂直平分線的性質(zhì)定理可得|PF2|=|F1F2|=2c,設(shè)PF1的中點為M,由中位線定理可得|MF2|=2a,再由勾股定理和雙曲線的定義可得4b-2c=2a,結(jié)合a,b,c的關(guān)系,可得a,b的關(guān)系,即可得到雙曲線的漸近線的斜率.

解答 解:由線段PF1的垂直平分線恰好過點F2,
可得|PF2|=|F1F2|=2c,
由直線PF1與以坐標(biāo)原點O為圓心、a為半徑的圓相切于點A,
可得|OA|=a,
設(shè)PF1的中點為M,由中位線定理可得|MF2|=2a,
在直角三角形PMF2中,可得|PM|=$\sqrt{4{c}^{2}-4{a}^{2}}$=2b,
即有|PF1|=4b,
由雙曲線的定義可得|PF1|-|PF2|=2a,
即4b-2c=2a,即2b=a+c,
即有4b2=(a+c)2,
即4(c2-a2)=(a+c)2,
可得a=$\frac{3}{5}$c,b=$\frac{4}{5}$c,
即有雙曲線的漸近線方程y=±$\frac{a}$x,
該雙曲線的漸近線的斜率為±$\frac{4}{3}$.
故選:A.

點評 本題考查雙曲線的定義、方程和性質(zhì),主要是漸近線方程,考查平面幾何中垂直平分線定理和中位線定理的運(yùn)用,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法錯誤的是(  )
A.命題,“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0“
B.對于命題p:?x0∈R,x02+x0+1<0,則¬p:?x∈R,x2+x+1≥0
C.若m,n∈R,“l(fā)nm<lnn“是“em<en”的必要不充分條件
D.若p∨q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,設(shè)長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,Q是AA1的中點,點P在線段B1D1上;
(1)試在線段B1D1上確定點P的位置,使得異面直線QB與DP所成角為60°,并請說明
你的理由;
(2)在滿足(1)的條件下,求四棱錐Q-DBB1P的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取100件作為樣本,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得到如圖頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(200,12.22),試計算數(shù)據(jù)落在(187.8,212.2)上的頻率;
參考數(shù)據(jù)
若Z~N(μ,δ2),則P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.
(Ⅲ)設(shè)生產(chǎn)成本為y,質(zhì)量指標(biāo)為x,生產(chǎn)成本與質(zhì)量指標(biāo)之間滿足函數(shù)關(guān)系y=$\left\{\begin{array}{l}{0.4x,x≤205}\\{0.8x-80,x>205}\end{array}\right.$,假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,試計算生產(chǎn)該食品的平均成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,存在單位向量$\overrightarrow{e}$,使得($\overrightarrow{a}$-$\overrightarrow{e}$)•($\overrightarrow$-$\overrightarrow{e}$)=0,則|$\overrightarrow{a}$-$\overrightarrow$|的取值范圍是[$\sqrt{7}$-1,$\sqrt{7}$+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點A(0,3),與雙曲線$\frac{{x}^{2}}{14}-\frac{{y}^{2}}{13}$=1有相同的焦點
(1)求橢圓C的方程;
(2)過A點作兩條相互垂直的直線,分別交橢圓C于P,Q兩點,則PQ是否過定點?若是,求出定點的坐標(biāo),若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在(0,+∞)上單調(diào)遞增,若對于任意x∈R,$f({{{log}_2}a})≤f({{x^2}-2x+2})$恒成立,則a的取值范圍是( 。
A.(0,1]B.$[{\frac{1}{2},2}]$C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某班主任為了對本班學(xué)生的數(shù)學(xué)和物理成績進(jìn)行分析,隨機(jī)抽取了8位學(xué)生的數(shù)學(xué)和物理成績?nèi)缦卤恚?br />
學(xué)生編號12345678
數(shù)學(xué)分?jǐn)?shù)x6065707580859095
物理分?jǐn)?shù)y7277808488909395
(Ⅰ)通過對樣本數(shù)據(jù)進(jìn)行初步處理發(fā)現(xiàn),物理成績y與數(shù)學(xué)成績x之間具有線性相關(guān)性,求y與x的線性回歸方程(系數(shù)精確到0.01).
(Ⅱ)當(dāng)某學(xué)生的數(shù)學(xué)成績?yōu)?00分時,估計該生的物理成績.(精確到0.1分)
參考公式:回歸直線的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.
參考數(shù)據(jù):$\sum_{i=1}^{8}({x}_{1}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈457,$\sum_{i=1}^{8}({x}_{1}-\overline{x})({y}_{1}-\overline{y})$≈688,$\sqrt{1050}$≈32.4.$\sqrt{457}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知四邊形ABEF于ABCD分別為正方形和直角梯形,平面ABEF⊥平面ABCD,AB=BC=$\frac{1}{2}$AD=1,AB⊥AD,BC∥AD,點M是棱ED的中點.
(1)求證:CM∥平面ABEF;
(2)求三棱錐D-ACF的體積.

查看答案和解析>>

同步練習(xí)冊答案