10.設(shè)集合M={x|x<3},集合N={x|0<x<2},則下列關(guān)系中正確的是(  )
A.M∪N=RB.M∪∁RN=RC.N∪∁RM=RD.M∩N=M

分析 由已知中集合M={x|x<3},集合N={x|0<x<2},結(jié)合集合的交集,交集,補(bǔ)集運(yùn)算,分別判斷各個運(yùn)算結(jié)果的正誤,可得答案.

解答 解:∵集合M={x|x<3},集合N={x|0<x<2},
∴M∪N={x|0<x<2},故A錯誤;
M∪∁RN=R,故B正確;
N∪∁RM={x|0<x<2,或x≥3},故C錯誤;
M∩N=N,故D錯誤;
故選:B.

點(diǎn)評 本題考查的知識點(diǎn)是集合的交集,交集,補(bǔ)集運(yùn)算,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若曲線f(x)=x4-x在點(diǎn)P處的切線垂直于直線x-y=0,則點(diǎn)P的坐標(biāo)為(0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)數(shù)${({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^3}$的共軛復(fù)數(shù)是(  )
A.-iB.iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某中學(xué)調(diào)查了某班全部50名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社團(tuán)未參加書法社團(tuán)
參加演講社團(tuán)86
未參加演講社團(tuán)630
(I)從該班隨機(jī)選1名同學(xué),求該同學(xué)至少參加上述一個社團(tuán)的概率;
(II)在既參加書法社團(tuán)又參加演講社團(tuán)的8名同學(xué)中,有5名男同學(xué)A1,A2,A3,A4,A5,3名女同學(xué)B1,B2,B3,現(xiàn)從這5名男同學(xué)和3名女同學(xué)中各隨機(jī)選1人,求A1被選中且B1未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a>b>0,則下列結(jié)論正確的是( 。
A.a2>b2B.a2<b2C.$\frac{1}{a}$>$\frac{1}$>0D.$\frac{1}{a}$<$\frac{1}$<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}的通項(xiàng)公式an=n2-2n-1(n∈N*),則a3等于( 。
A.1B.2C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.點(diǎn)P(x,y)是-60°角終邊與單位圓的交點(diǎn),則$\frac{y}{x}$的值為$-\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知命題p:方程a2x2+ax-2=0在區(qū)間[0,1]上有解,命題q:對于?x∈R,不等式sinx+cosx>a恒成立.若命題p∨q為真命題,p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某機(jī)構(gòu)隨機(jī)調(diào)查了某市部分成年市民某月騎車次數(shù),統(tǒng)計(jì)如下:
次數(shù)
人數(shù)
年齡
[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
18歲至31歲8122060140150
32歲至44歲12282014060150
45歲至59歲255080100225450
60歲及以上2510101852
聯(lián)合國世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老年人.月騎車次數(shù)不少于30次者稱為“騎行愛好者”.根據(jù)以上數(shù)據(jù),用樣本估計(jì)總體,能否在犯錯誤的概率不超過0.005的前提下認(rèn)為“騎行愛好者”與“青年人”有關(guān)?
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+c)(a+b)(b+d)(c+d)}$.

查看答案和解析>>

同步練習(xí)冊答案