2.點(diǎn)P(x,y)是-60°角終邊與單位圓的交點(diǎn),則$\frac{y}{x}$的值為$-\sqrt{3}$.

分析 直接利用任意角的三角函數(shù),求解即可.

解答 解:角-60°的終邊為點(diǎn)P(x,y),
可得:tan(-60°)=$\frac{y}{x}=-\sqrt{3}$.
故答案為:$-\sqrt{3}$.

點(diǎn)評(píng) 本題考查任意角的三角函數(shù)的定義,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖所示:在邊長(zhǎng)為1的正方形OABC中任取一點(diǎn)P,則點(diǎn)P恰好取自陰影部分的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.記f(n)(x)為函數(shù)f(x)的n(n∈N*)階導(dǎo)函數(shù),即f(n)(x)=[f(n-1)(x)]′(n≥2,n∈N*).若f(x)=cosx,且集合M={m|f(m)(x)=sinx,m∈N*,m≤2017},則集合M中元素的個(gè)數(shù)為(  )
A.1006B.1007C.503D.504

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合M={x|x<3},集合N={x|0<x<2},則下列關(guān)系中正確的是( 。
A.M∪N=RB.M∪∁RN=RC.N∪∁RM=RD.M∩N=M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=tan(2x-$\frac{π}{6}$),則下列說(shuō)法錯(cuò)誤的是( 。
A.函數(shù)f(x)的周期為$\frac{π}{2}$
B.函數(shù)f(x)的值域?yàn)镽
C.點(diǎn)($\frac{π}{3}$,0)是函數(shù)f(x)的圖象的一個(gè)對(duì)稱(chēng)中心
D.f($\frac{π}{5}$)<f($\frac{2π}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知平面內(nèi)M,N,P,Q四點(diǎn),其中N,P,Q三點(diǎn)共線,且$\overrightarrow{MQ}$=λ$\overrightarrow{MN}$+μ$\overrightarrow{MP}$,則λ+μ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),e為自然對(duì)數(shù)的底數(shù),且xf′(x)lnx>f(x),則( 。
A.f(2)<f(4)ln2,2f(e)>f(e2B.f(2)<f(4)ln2,2f(e)<f(e2
C.f(2)>f(4)ln2,2f(e)<f(e2D.f(2)>f(4)ln2,2f(e)>f(e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.不等式x2-x-6<0的解集為( 。
A.{x|x<-2或x>3}B.{x|x<-2}C.{x|-2<x<3}D.{x|x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.甲乙丙丁四個(gè)人互送禮物,他們各自準(zhǔn)備了一份禮物(禮物不同),那么他們拿到的禮物都不是自己的概率是$\frac{3}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案