15.設(shè){an}是等差數(shù)列,Sn為其前n項和.若正整數(shù)i,j,k,l滿足i+l=j+k(i≤j≤k≤l),則( 。
A.aial≤ajakB.aial≥ajakC.SiSl<SjSkD.SiSl≥SjSk

分析 根據(jù)題意,i、j、k、l不妨取1、2、3、4,利用作差法判定a1•a4與a2•a3以及S1•S4-S2•S3的大小,即可得出結(jié)論.

解答 解:根據(jù)題意,i、j、k、l不妨取1、2、3、4,
則a1•a4-a2•a3=a1•(a1+3d)-(a1+d)(a1+2d)=-2d2≤0,
所以a1a4≤a2a3
又S1•S4-S2•S3=a1(4a1+6d)-(2a1+d)(3a1+3d)
=-2a12-3a1d-3d2=-2(a1+$\frac{3}{4}$d)2-$\frac{15}{8}$d2≤0,
所以S1•S4≤S2•S3
即A正確,C不正確.
故選:A.

點評 本題考查了等差數(shù)列的通項公式與求和公式應(yīng)用問題,考查運算能力和判斷能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\frac{1}{sinφ}$+$\frac{1}{cosφ}$=2$\sqrt{2}$,若φ∈(0,$\frac{π}{2}$),則${∫}_{-1}^{tanφ}$(x2-2x)dx=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某校高三年級學(xué)生一次數(shù)學(xué)診斷考試成績(單位:分)X服從正態(tài)分布N(110,102),從中抽取一個同學(xué)的數(shù)學(xué)成績ξ,記該同學(xué)的成績90<ξ≤110為事件A,記該同學(xué)的成績80<ξ≤100為事件B,則在A事件發(fā)生的條件下B事件發(fā)生的概率P(B|A)=$\frac{27}{95}$(用分?jǐn)?shù)表示)
附:X滿足P(μ-σ<X≤μ+σ)=0.68,P(μ-2σ<X≤μ+2σ)=0.95,P(μ-3σ<X≤μ+3σ)=0.99.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖所示,在三棱柱ABC-A1B1C1中,已知AC⊥平面BCC1B1,AC=BC=1,BB1=2,∠B1BC=60°.
(1)證明:B1C⊥AB;
(2)已知點E在棱BB1上,二面角A-EC1-C為45°,求$\frac{BE}{{B{B_1}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.“微信運動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)
性別
0~20002001~50005001~80008001~10000>10000
12368
021062
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
積極型懈怠型總計
14822
61218
總計202040
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有X人,超過10000步的有Y人,設(shè)ξ=|X-Y|,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=3lnx-\frac{1}{2}{x^2}+x$,g(x)=3x+a.
(Ⅰ)若f(x)與g(x)相切,求a的值;
(Ⅱ)當(dāng)$a=\frac{5}{2}$時,P(x1,y1)為f(x)上一點,Q(x2,y2)為g(x)上一點,求|PQ|的最小值;
(Ⅲ)?x0>0,使f(x0)>g(x0)成立,求參數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.共享單車的出現(xiàn)方便了人們的出行,深受我市居民的喜愛.為調(diào)查某校大學(xué)生對共享單車的使用情況,從該校8000名學(xué)生中按年級用分層抽樣的方式隨機抽取了100位同學(xué)進(jìn)行調(diào)查,得到這100名同學(xué)每周使用共享單車的時間(單位:小時)如表:
使用時間[0,2](2,4](4,6](6,8](8,10]
人數(shù)104025205
(Ⅰ)已知該校大一學(xué)生由2400人,求抽取的100名學(xué)生中大一學(xué)生人數(shù);
(Ⅱ)作出這些數(shù)據(jù)的頻率分布直方圖;
(Ⅲ)估計該校大學(xué)生每周使用共享單車的平均時間$\overline t$(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示的空間幾何體ABCDEFG中,四邊形ABCD是邊長為2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1.
(1)求證:平面CFG⊥平面ACE;
(2)在AC上是否一點H,使得EH∥平面CFG?若存在,求出CH的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.邊長為2的正方形ABCD所在的平面與△CDE所在的平面交于CD,且AE⊥平面CDE,M為AD上的點,AE=1,AM=$\frac{1}{2}$.
(Ⅰ)求證:EM⊥BD;
(Ⅱ)設(shè)點F是棱BC上一點,若二面角A-DE-F的余弦值為$\frac{\sqrt{10}}{10}$,試確定點F在BC上的位置.

查看答案和解析>>

同步練習(xí)冊答案