19.等比數(shù)列{an}中,a2,a6是方程x2-34x+64=0的兩根,則a4等于( 。
A.8B.-8C.±8D.以上都不對(duì)

分析 利用根與系數(shù)的關(guān)系、等比數(shù)列的性質(zhì)即可得出.

解答 解:等比數(shù)列{an}中,a2,a6是方程x2-34x+64=0的兩根,
∴a2•a6=64=${a}_{4}^{2}$,
則a4=±8.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了解人們對(duì)于國(guó)家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡大點(diǎn)頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(I)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開”政策的支持度有差異:
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計(jì)
支持a=c=
不支持b=d=
合計(jì)
(Ⅱ)若對(duì)年齡在[5,15]的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù):P(K2≥3.841)=0.050,P(k2≥6.635)=0.010,P(K2≥10.828)=0.001.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.不等式組$\left\{{\begin{array}{l}{x-{x^2}>0}\\{{{log}_x}\frac{1}{3}>\frac{1}{2}}\end{array}}\right.$的解集是(0,$\frac{1}{9}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)是定義在R上的奇函數(shù)且單調(diào)遞增,則不等式f(x)<f(x2)的解集是( 。
A.(-∞,0)∪(1,+∞)B.(-∞,0)∪[1,+∞)C.(-∞,0]∪[1,+∞)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為了解三明市XX中學(xué)高二文科學(xué)生的數(shù)學(xué)水平,從該中學(xué)高二文科學(xué)生中隨機(jī)抽取了20名學(xué)生的期中考數(shù)學(xué)成績(jī),成績(jī)(單位:分;滿分:100分)的頻率分布直方圖如圖:
(Ⅰ)求頻率分布直方圖中a值,并由這20名學(xué)生成績(jī)估計(jì)該中學(xué)數(shù)學(xué)期中考的平均成績(jī);
(Ⅱ)現(xiàn)年段長(zhǎng)從成績(jī)?cè)?0分以下(不含70分)的學(xué)生中選2人談話,求恰有1人成績(jī)?cè)趨^(qū)間[60,70)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.長(zhǎng)春市的“名師云課”活動(dòng)自開展以來獲得廣大家長(zhǎng)和學(xué)生的高度贊譽(yù),在我市推出的第二季名師云課中,數(shù)學(xué)學(xué)科共計(jì)推出36節(jié)云課,為了更好地將課程內(nèi)容呈現(xiàn)給學(xué)生,現(xiàn)對(duì)某一時(shí)段云課的點(diǎn)擊量進(jìn)行統(tǒng)計(jì):
點(diǎn)擊量[0,1000](1000,3000](3000,+∞)
節(jié)數(shù)61812
(Ⅰ)現(xiàn)從36節(jié)云課中采用分層抽樣的方式選出6節(jié),求選出的點(diǎn)擊量超過3000的節(jié)數(shù).
(Ⅱ)為了更好地搭建云課平臺(tái),現(xiàn)將云課進(jìn)行剪輯,若點(diǎn)擊量在區(qū)間[0,1000]內(nèi),則需要花費(fèi)40分鐘進(jìn)行剪輯,若點(diǎn)擊量在區(qū)間(1000,3000]內(nèi),則需要花費(fèi)20分鐘進(jìn)行剪輯,點(diǎn)擊量超過3000,則不需要剪輯,現(xiàn)從(Ⅰ)中選出的6節(jié)課中隨機(jī)取出2節(jié)課進(jìn)行剪輯,求剪輯時(shí)間X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點(diǎn)P(x,y)滿足不等式組$\left\{\begin{array}{l}{3x+y-7≥0}\\{x-y-1≤0}\\{x+y-5≤0}\end{array}\right.$,則z=$\frac{{x}^{2}+xy+{y}^{2}}{xy}$的范圍是[3,$\frac{17}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知角α的終邊經(jīng)過點(diǎn)P(3,-4),則角α的正切值為(  )
A.$\frac{3}{4}$B.-4C.$-\frac{4}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,兩個(gè)非共線向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為θ,M、N分別為OA與OB的中點(diǎn),點(diǎn)C在直線MN上,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),則x2+y2的最小值為$\frac{1}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案