7.某景區(qū)客棧的工作人員為了控制經(jīng)營成本,減少浪費(fèi),合理安排入住游客的用餐,他們通過統(tǒng)計每個月入住的游客人數(shù),發(fā)現(xiàn)每年各個月份來客棧入住的游客人數(shù)會發(fā)生周期性的變化,并且有以下規(guī)律:
①每年相同的月份,入住客棧的游客人數(shù)基本相同;
②入住客棧的游客人數(shù)在2月份最少,在8月份最多,相差約400人;
③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)若入住客棧的游客人數(shù)y與月份x之間的關(guān)系可用函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,0<|φ|<π)近似描述,求該函數(shù)解析式.
(2)請問哪幾個月份要準(zhǔn)備不少于400人的用餐?

分析 (1)由題意可得:$\left\{\begin{array}{l}{-A+b=100}\\{A+b=500}\end{array}\right.$,解得A,b.又$\frac{2π}{ω}$=2×(8-2),解得ω.可得y=f(x)=200sin$(\frac{π}{6}x+φ)$+300.又sin$(\frac{π}{6}×2+φ)$=-1,又0<|φ|<π,解得φ,即可得出.
(2)由200sin$(\frac{π}{6}x-\frac{5π}{6})$+300≥400,化簡利用正弦函數(shù)的單調(diào)性值域即可得出.

解答 解:(1)由題意可得:$\left\{\begin{array}{l}{-A+b=100}\\{A+b=500}\end{array}\right.$,解得A=200,b=300.
又$\frac{2π}{ω}$=2×(8-2),解得ω=$\frac{π}{6}$.
∴y=f(x)=200sin$(\frac{π}{6}x+φ)$+300.
又sin$(\frac{π}{6}×2+φ)$=-1,又0<|φ|<π,
解得φ=$-\frac{5π}{6}$.
∴y=f(x)=200sin$(\frac{π}{6}x-\frac{5π}{6})$+300.
(2)由200sin$(\frac{π}{6}x-\frac{5π}{6})$+300≥400,
化為:sin$(\frac{π}{6}x-\frac{5π}{6})$$≥\frac{1}{2}$,(x∈N*,1≤x≤12)
解得x=6,7,8,9,10.
因此應(yīng)該在6,7,8,9,10月份要準(zhǔn)備不少于400人的用餐.

點(diǎn)評 本題考查了正弦函數(shù)的圖象與性質(zhì)、不等式的解法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,橢圓C:x2+3y2=3b2(b>0)
(Ⅰ)若長軸長與短軸長的差為4$\sqrt{3}$-4,求橢圓方程
(Ⅱ)若b=1,A,B是橢圓C上的兩點(diǎn),且|AB|=$\sqrt{3}$,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知平行四邊形ABCD中,∠ABC=60°,AB=1,BC=2,則$\overrightarrow{BA}$$•\overrightarrow{BD}$=( 。
A.1B.2C.1$+\sqrt{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式|x-4|+|x-3|<a的解集不是空集,則a的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a,b∈R,a≠0,函數(shù)f(x)=-$\sqrt{2}$(sinx+cosx)+b,g(x)=asinx•cosx+$\frac{a}{2}$+$\frac{1}{a}$+2.
(1)若x∈(0,π),f(x)=-$\frac{2\sqrt{5}}{5}$+b,求sinx-cosx的值;
(2)若不等式f(x)≤g(x)對任意x∈R恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,設(shè)不等式組$\left\{{\begin{array}{l}{-1≤x≤1}\\{0≤y≤1}\end{array}}\right.$表示的平面區(qū)域?yàn)殚L方形ABCD,長方形ABCD內(nèi)的曲線為拋物線y=x2的一部分,若在長方形ABCD內(nèi)隨機(jī)取一個點(diǎn),則此點(diǎn)取自陰影部分的概率等于( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.為了減少能源損耗,某工廠需要給生產(chǎn)車間建造可使用20年的隔熱層.已知建造該隔熱層每厘米厚的建造成本為3萬元.該生產(chǎn)車間每年的能源消耗費(fèi)用M(單位:萬元)與隔熱層厚度x(單位:厘米)滿足關(guān)系:M(x)=$\frac{k}{x+2}$(0≤x≤10),若不建隔熱層,每年能源消耗費(fèi)用為7.5萬元,設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用只和.
(1)求k的值及f(x)的表達(dá)式;
(2)試問當(dāng)隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最少?并求出最少費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)既是奇函數(shù),又在區(qū)間(0,1)上單調(diào)遞減的是( 。
A.y=-$\frac{1}{x}$B.y=x3+xC.y=-x|x|D.y=ln$\frac{1+x}{1-x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=cos2x+acosx+2.
(1)若a>0,且當(dāng)x∈R時,f(x)的最小值為-1,求實(shí)數(shù)a的值;
(2)若a=2,且當(dāng)x∈[0,$\frac{π}{2}$]時,f(x)>m(cosx+1)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案