12.如圖,設(shè)不等式組$\left\{{\begin{array}{l}{-1≤x≤1}\\{0≤y≤1}\end{array}}\right.$表示的平面區(qū)域為長方形ABCD,長方形ABCD內(nèi)的曲線為拋物線y=x2的一部分,若在長方形ABCD內(nèi)隨機取一個點,則此點取自陰影部分的概率等于( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 由題意,首先利用定積分求出陰影部分的面積,由幾何概型的公式得到陰影部分的面積與矩形的面積比為所求概率.

解答 解:由題意,矩形的面積為2×1=2,
陰影部分的面積為2${∫}_{0}^{1}{x}^{2}dx$=2×$\frac{2}{3}{x}^{3}{|}_{0}^{1}$=$\frac{4}{3}$;
由幾何概型的公式得到所求概率為$\frac{\frac{4}{3}}{2}=\frac{2}{3}$;
故選A.

點評 本題考查了幾何概型的概率求法;明確幾何測度為區(qū)域的面積是關(guān)鍵;用到了定積分的幾何意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,某開發(fā)區(qū)內(nèi)新建兩棟樓AB,CD(A,C為水平地面),已知樓AB的高度為10m,兩樓間的距離AC為70m.
(1)若在AC上距離樓AB30m的點P處測得兩樓的張角∠BPD=135°,求樓CD的高度;
(2)若樓CD的高度為20米,試在AC上確定一點P,使得張角∠BPD最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表:
 價格x(元/kg) 10 15 20 25 30
 日需求量y(kg) 11 10 8 6 5
(1)求y關(guān)于x的線性回歸方程
(2)利用(1)中的回歸方程,當(dāng)價格x=35元/kg時,日需求量y的預(yù)測值為多少?
參考公式:線性回歸方程$\widehat{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$$-b\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知第二象限角θ的終邊與以原點為圓心的單位圓交于點(-$\frac{12}{13}$,$\frac{5}{13}$).
(1)寫出三角函數(shù)sinθ,cosθ,tanθ的值;
(2)若f(θ)=$\frac{cos(\frac{3π}{2}+θ)•cos(π-θ)•tan(3π+θ)}{sin(\frac{3π}{2}-θ)•sin(-θ)}$,求f(θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某景區(qū)客棧的工作人員為了控制經(jīng)營成本,減少浪費,合理安排入住游客的用餐,他們通過統(tǒng)計每個月入住的游客人數(shù),發(fā)現(xiàn)每年各個月份來客棧入住的游客人數(shù)會發(fā)生周期性的變化,并且有以下規(guī)律:
①每年相同的月份,入住客棧的游客人數(shù)基本相同;
②入住客棧的游客人數(shù)在2月份最少,在8月份最多,相差約400人;
③2月份入住客棧的游客約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)若入住客棧的游客人數(shù)y與月份x之間的關(guān)系可用函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,0<|φ|<π)近似描述,求該函數(shù)解析式.
(2)請問哪幾個月份要準(zhǔn)備不少于400人的用餐?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.當(dāng)x∈(0,3)時,關(guān)于x的不等式ex-x-2mx>0恒成立,則實數(shù)m的取值范圍是( 。
A.(-∞,$\frac{e-1}{2}$)B.($\frac{e-1}{2}$,+∞)C.(-∞,e+1)D.(e+1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.1B.2C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=xlnx(x>0).
(1)求函數(shù)f(x)的最小值;
(2)f′(x)為f(x)的導(dǎo)函數(shù),設(shè)F(x)=ax2+f′(x)(a∈R),討論函數(shù)F(x)的單調(diào)性;
(3)若斜率為k的直線與曲線y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)兩點,求證:${x}_{1}<\frac{1}{k}<{x}_{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x-${e^{\frac{x}{a}}}$存在單調(diào)遞減區(qū)間,且y=f(x)的圖象在x=0處的切線l與曲線y=ex相切,符合情況的切線l有0條.

查看答案和解析>>

同步練習(xí)冊答案