20.已知各項均為正數(shù)的等比數(shù)列{an}中,a5•a6=4,則數(shù)列{log2an}的前10項和為10.

分析 各項均為正數(shù)的等比數(shù)列{an}中,a5•a6=4=a1a10=…=a4a7,再利用對數(shù)運(yùn)算性質(zhì)即可得出.

解答 解:各項均為正數(shù)的等比數(shù)列{an}中,a5•a6=4=a1a10=…=a4a7,
則數(shù)列{log2an}的前10項和=log2(a1a2…•a10)=$lo{g}_{2}{4}^{5}$=10.
故答案為:10.

點(diǎn)評 本題考查了對數(shù)運(yùn)算性質(zhì)、等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集U=Z,A={x∈Z|x2-x-2<0},B={-1,0,1,2},則圖中陰影部分所表示的集合等于( 。
A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosα}\\{y=2+sinα}\end{array}\right.$(α為參數(shù)),直線C2的方程為y=$\sqrt{3}x$,以O(shè)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,
(1)求曲線C1和直線C2的極坐標(biāo)方程;
(2)若直線C2與曲線C1交于A,B兩點(diǎn),求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且(2b-c)cosA=acosC.
(1)求角A的大。
(2)若y=cos2$\frac{B}{2}$+cos2$\frac{C}{2}$-1,求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將A,B,C,D,E排成一列,要求A,B,C在排列中順序為“A,B,C”或“C,B,A”( A,B,C可以不相鄰),這樣的排列數(shù)有( 。
A.12種B.20種C.40種D.60種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市舉行“中學(xué)生詩詞大賽”海選,規(guī)定:成績大于或等于90分的具有參賽資格.某校有800名學(xué)生參加了海選,所有學(xué)生的成績均在區(qū)間[30,150]內(nèi),其頻率分布直方圖如圖:
(Ⅰ)求獲得參賽資格的人數(shù);
(Ⅱ)若大賽分初賽和復(fù)賽,在初賽中每人最多有5次選題答題的機(jī)會,累計答對3題或答錯3題即終止,答對3題者方可參加復(fù)賽.已知參賽者甲答對每一個問題的概率都相同,并且相互之間沒有影響,已知他連續(xù)兩次答錯的概率為$\frac{1}{9}$,求甲在初賽中答題個數(shù)X的分布列及數(shù)學(xué)期望E(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知關(guān)于x的不等式|x-1|+|x+3|≤m的解集不是空集,記m的最小值為t.
(Ⅰ)求t的值;
(Ⅱ)若不等式|x-1|+|x+3|>|x-a|的解集包含[-1,0],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合U={x|x>1},集合A={x|x2-4x+3<0},則∁UA=( 。
A.[3,+∞)B.(3,+∞)C.(-∞,-1)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知實數(shù)x、y滿足$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≤2}\\{0≤y≤3}\end{array}}\right.$,則z=2x+y-6的最小值是-5.

查看答案和解析>>

同步練習(xí)冊答案