【題目】下列命題正確的是(

A.若數(shù)列的極限都存在,且,則數(shù)列的極限存在

B.若數(shù)列、的極限都不存在,則數(shù)列的極限也不存在

C.若數(shù)列、的極限都存在,則數(shù)列、的極限也存在

D.數(shù),若數(shù)列的極限存在,則數(shù)列的極限也存在

【答案】C

【解析】

通過給變量取特殊值,舉反例,再利用數(shù)列極限的定義和運(yùn)算,可得選項(xiàng)A,B,D不正確,利用數(shù)列極限的運(yùn)算法則可得C正確.

解:對(duì)于選項(xiàng)A,取,則數(shù)列、的極限都存在,又,則數(shù)列的極限不存在,即A錯(cuò)誤;

對(duì)于選項(xiàng)B,取,則數(shù)列、的極限都不存在,又,則數(shù)列的極限存在,即B錯(cuò)誤;

對(duì)于選項(xiàng)C,設(shè),則,

同理,即數(shù)列、的極限也存在,故C正確;

對(duì)于選項(xiàng)D,取,則,則數(shù)列的極限存在,但數(shù)列的極限不存在,即D錯(cuò)誤,

即命題正確的是選項(xiàng)C,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S-ABCD的底面是邊長為1的正方形,則棱SB垂直于底面.

(1)求證:平面SBD⊥平面SAC;

(2)若SA與平面SCD所成角的正弦值為,求SB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:方程x2+y24x+m20表示圓:q:方程1m0)表示焦點(diǎn)在y軸上的橢圓.

(1)若p為真命題,求實(shí)數(shù)m的取值范圍;

(2)若命題pq有且僅有一個(gè)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).

(1)求圓的直角坐標(biāo)方程及弦的長;

(2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,公差為.

(1)若,求數(shù)列的通項(xiàng)公式;

(2)是否存在使成立?若存在,試找出所有滿足條件的的值,并求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】4個(gè)不同的紅球和6個(gè)不同的白球放入同一個(gè)袋中,現(xiàn)從中取出4個(gè)球.

1)若取出的紅球的個(gè)數(shù)不少于白球的個(gè)數(shù),則有多少不同的取法?

2)取出一個(gè)紅球記2分,取出一個(gè)白球記1分,若取出4個(gè)球所得總分不少于5分,則有多少種不同取法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中

(1)求的單調(diào)減區(qū)間;

(2)當(dāng)時(shí),恒成立,求的取值范圍;

(3)設(shè) 只有兩個(gè)零點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】艾滋病是一種危害性極大的傳染病,由感染艾滋病病毒病毒引起,它把人體免疫系統(tǒng)中最重要的CD4T淋巴細(xì)胞作為主要攻擊目標(biāo),使人體喪失免疫功能下表是近八年來我國艾滋病病毒感染人數(shù)統(tǒng)計(jì)表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼x

1

2

3

4

5

6

7

8

感染者人數(shù)單位:萬人

85

請(qǐng)根據(jù)該統(tǒng)計(jì)表,畫出這八年我國艾滋病病毒感染人數(shù)的折線圖;

請(qǐng)用相關(guān)系數(shù)說明:能用線性回歸模型擬合yx的關(guān)系;

建立y關(guān)于x的回歸方程系數(shù)精確到,預(yù)測(cè)2019年我國艾滋病病毒感染人數(shù).

參考數(shù)據(jù):;,,,

參考公式:相關(guān)系數(shù),

回歸方程中, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解一款電冰箱的使用時(shí)間和市民對(duì)這款電冰箱的購買意愿,研究人員對(duì)該款電冰箱進(jìn)行了相應(yīng)的抽樣調(diào)查,得到數(shù)據(jù)的統(tǒng)計(jì)圖表如下:

購買意愿市民年齡

不愿意購買該款電冰箱

愿意購買該款電冰箱

總計(jì)

40歲以上

600

800

40歲以下

400

總計(jì)

800

(1)根據(jù)圖中的數(shù)據(jù),估計(jì)該款電冰箱使用時(shí)間的中位數(shù);

(2)完善表中數(shù)據(jù),并據(jù)此判斷是否有的把握認(rèn)為“愿意購買該款電冰箱“與“市民年齡”有關(guān);

(3)用頻率估計(jì)概率,若在該電冰箱的生產(chǎn)線上隨機(jī)抽取3臺(tái),記其中使用時(shí)間不低于4年的電冰箱的臺(tái)數(shù)為,求的期望.

附:

查看答案和解析>>

同步練習(xí)冊(cè)答案