【題目】已知橢圓過(guò)點(diǎn),且離心率為.

(1)求橢圓的方程;

(2)過(guò)的直線交橢圓,兩點(diǎn),判斷點(diǎn)與以線段為直徑的圓的位置關(guān)系,并說(shuō)明理由.

【答案】(1);(2)見解析.

【解析】試題分析:(1)由橢圓過(guò)點(diǎn),且離心率為,列出方程組,解方程組,即可求得橢圓的方程;(2)法一:先討論斜率為零時(shí),再討論斜率不為零時(shí),設(shè)直線方程,代入橢圓方程,利用韋達(dá)定理及兩點(diǎn)之間的距離公式,即可求得,即可判斷點(diǎn)G在以AB為直徑的圓外;法二:先討論斜率為零時(shí),再討論斜率不為零時(shí),設(shè)直線方程,設(shè)直線方程,代入橢圓方程,利用韋達(dá)定理及向量的坐標(biāo)運(yùn)算,求得,則為銳角,即可判斷點(diǎn)G在以AB為直徑的圓外.

試題解析:(1)橢圓E:過(guò)點(diǎn),且離心率為

,

橢圓的方程.

(2)法一當(dāng)的斜率為時(shí),顯然G與以線段AB為直徑的圓的外面,

當(dāng)的斜率不為時(shí),設(shè)的方程為:,點(diǎn)AB中點(diǎn)為

,

所以

從而.

所以.

,

所以,故G在以AB為直徑的圓外.

法二當(dāng)的斜率為時(shí),顯然G與以線段AB為直徑的圓的外面,

當(dāng)的斜率不為時(shí),設(shè)的方程為:,設(shè)點(diǎn),

,

.

不共線,所以為銳角,

故點(diǎn)G在以AB為直徑的圓外.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),若曲線在點(diǎn) 處的切線方程為.

(Ⅰ)求的解析式;

(Ⅱ)求證:在曲線上任意一點(diǎn)處的切線與直線所圍成的三角形面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)、的坐標(biāo)分別是,,直線相交于點(diǎn),且它們的斜率之積為.

1)求動(dòng)點(diǎn)的軌跡方程;

2)若過(guò)點(diǎn)的直線交動(dòng)點(diǎn)的軌跡于、兩點(diǎn), 為線段,的中點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一個(gè)關(guān)于平面圖形的命題:如圖,同一平面內(nèi)有兩個(gè)邊長(zhǎng)都是2的正方形,其中一個(gè)的某頂點(diǎn)在另一個(gè)的中心,則這兩個(gè)正方形重疊部分的面積恒為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(江淮十校2017屆高三第一次聯(lián)考文數(shù)試題第7題)《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,其中《方田》章計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積=1/2(弦矢+矢2).弧田(如圖),由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差.按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與其實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,半徑等于4米的弧田.按照上述方法計(jì)算出弧田的面積約為( )

A. 6平方米 B. 9平方米 C. 12平方米 D. 15平方米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為6cm,該紙片上的正方形ABCD的中心為OE,F,G,H為圓O上的點(diǎn),△ABE,△BCF,△CDG,△ADH分別是以AB,BC,CDDA為底邊的等腰三角形.沿虛線剪開后,分別以AB,BCCD,DA為折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,GH重合得到一個(gè)四棱錐.當(dāng)該四棱錐的側(cè)面積是底面積的2倍時(shí),該四棱錐的外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面四個(gè)命題,

1)函數(shù)在第一象限是增函數(shù);

2)在中,的充分非必要條件;

3)函數(shù)圖像關(guān)于點(diǎn)對(duì)稱的充要條件是;

4)若,則.

其中真命題的是_________.(填所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知函數(shù)fx2x),若fθ∈(0,),求tanθ

2)若函數(shù)gx)=﹣(sincoscos,討論函數(shù)gx)在區(qū)間[上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線 經(jīng)過(guò)伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求出曲線、的參數(shù)方程;

(Ⅱ)若、分別是曲線上的動(dòng)點(diǎn),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案