【題目】已知函數f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集為[0,1].
(1)求m的值;
(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求證:ax+by+cz≤1.
【答案】見解析
【解析】(1)由f(x+1)≥0得|x|+|x-1|≤m.
∵|x|+|x-1|≥1恒成立,
∴若m<1,不等式|x|+|x-1|≤m的解集為,不合題意.
若m≥1,①當x<0時,得x≥,則≤x<0;
②當0≤x≤1時,得x+1-x≤m,即m≥1恒成立;
③當x>1時,得x≤,則1<x≤.
綜上可知,不等式|x|+|x-1|≤m的解集為.
由題意知,原不等式的解集為[0,1],
∴ 解得m=1.
(2)證明:∵x2+a2≥2ax,y2+b2≥2by,z2+c2≥2cz,
三式相加,得x2+y2+z2+a2+b2+c2≥2ax+2by+2cz.
由題設及(1),知x2+y2+z2=a2+b2+c2=m=1,
∴2≥2(ax+by+cz),即ax+by+cz≤1,得證.
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,{bn}是等比數列,且b2=3,b3=9,a1=b1,a14=b4.
(1)求{an}的通項公式;
(2)設cn=an+bn,求數列{cn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解學生身高情況,某校以的比例對全校1000名學生按性別進行分層抽樣調查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):
(1)計算所抽取的男生人數,并估計男生身高的中位數(保留兩位小數);
(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρsin2θ=2acos θ(a>0),過點P(-2,-4)的直線l: (t為參數)與曲線C相交于M,N兩點.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數列,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下列表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全班50人中隨機抽取1人,抽到喜愛打籃球的學生的概率為.
(1)請將上表補充完整(不用寫計算過程);
(2)能否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,橢圓的左、右焦點分別為, 也是拋物線的焦點,點M為在第一象限的交點,且.
(1)求的方程;
(2)平面上的點N滿足,直線,且與交于A,B兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知=(sinx,cosx),=(cosφ,sinφ)(|φ|<).函數
f(x)= 且f(-x)=f(x).
(Ⅰ)求f(x)的解析式及單調遞增區(qū)間;
(Ⅱ)將f(x)的圖象向右平移單位得g(x)的圖象,若g(x)+1≤ax+cosx在x∈[0, ]上恒成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com