【題目】已知函數(shù)在處的切線方程為.
(1)求的值;(2)若對任意的,都有成立,求正數(shù)的取值范圍.
【答案】(1) (2).
【解析】試題分析:(1)求出 的導數(shù),由,得 ;(2)不等式整理可得, 在 恒成立,利用導數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最小值,即可得到的范圍.
試題解析:(1)由題意得,因函數(shù)在處的切線方程為,
所以,得.
(2)由(1)知對任意都成立,
又不等式整理可得,
令,
所以,得,
當時, ,函數(shù)在上單調(diào)遞增,
同理,函數(shù)在上單調(diào)遞減,所以,
綜上所述,實數(shù)的取值范圍是.
【方法點晴】本題主要考查利用導數(shù)求函數(shù)的切線斜率以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值或恒成立;④ 討論參數(shù).本題是利用方法 ① 求得 的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點為M,GH的中點為N。
(1)請將字母F,G,H標記在正方體相應的頂點處(不需說明理由);
(2)證明:直線MN∥平面BDH;
(3)過點M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一個食品商店為了調(diào)查氣溫對熱飲銷售的影響,經(jīng)過調(diào)查得到關(guān)于賣出的熱飲杯數(shù)與當天氣溫的數(shù)據(jù)如下表,繪出散點圖如下.通過計算,可以得到對應的回歸方程=-2.352x+147.767,根據(jù)以上信息,判斷下列結(jié)論中正確的是( )
攝氏溫度 | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
熱飲杯數(shù) | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
A.氣溫與熱飲的銷售杯數(shù)之間成正相關(guān)
B.當天氣溫為2℃時,這天大約可以賣出143杯熱飲
C.當天氣溫為10℃時,這天恰賣出124杯熱飲
D.由于x=0時,的值與調(diào)查數(shù)據(jù)不符,故氣溫與賣出熱飲杯數(shù)不存在線性相關(guān)性
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.
(1)求點Q的軌跡C2的直角坐標方程;
(2)直線l與直線C2交于A,B兩點,若|AB|≥2,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集為[0,1].
(1)求m的值;
(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求證:ax+by+cz≤1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在路邊安裝路燈,路寬為,燈柱長為米,燈桿長為1米,且燈桿與燈柱成角,路燈采用圓錐形燈罩,其軸截面的頂角為,燈罩軸線與燈桿垂直.
⑴設(shè)燈罩軸線與路面的交點為,若米,求燈柱長;
⑵設(shè)米,若燈罩截面的兩條母線所在直線一條恰好經(jīng)過點,另一條與地面的交點為(如圖2)
(圖1) (圖2)
(。┣的值;(ⅱ)求該路燈照在路面上的寬度的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省兩相近重要城市之間人員交流頻繁,為了緩解交通壓力,特修一條專用鐵路,用一列火車作為交通車,已知該車每次拖4節(jié)車廂,一日能來回16次,如果每次拖7節(jié)車廂,則每日能來回10次.
(1)若每日來回的次數(shù)是車頭每次拖掛車廂節(jié)數(shù)的一次函數(shù),求此一次函數(shù)解析式:
(2)在(1)的條件下,每節(jié)車廂能載乘客110人.問這列火車每天來回多少次才能使運營人數(shù)最多?并求出每天最多運營人數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中學生測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評,某校高一年級有男生人,女生人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了名學生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下:
等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數(shù) | 15 |
| 5 |
表一:男生
等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數(shù) | 15 | 3 |
|
表二:女生
(1)從表二的非優(yōu)秀學生中隨機選取人交談,求所選人中恰有人測評等級為合格的概率;
(2)由表中統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,試采用獨立性檢驗進行分析,能否在犯錯誤的概率不超過的前提下認為“測評結(jié)果優(yōu)秀與性別有關(guān)”,參考數(shù)據(jù)與公示: ,其中
臨界值表:
| 0.10 | 0.05 | 0.01 |
| 2.70 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)是R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則f(-2),f(3),f(-)的大小順序是:( )
A. f(-)>f(3)>f(-2) B. f(-) >f(-2)>f(3)
C. f(-2)>f(3)> f(-) D. f(3)>f(-2)> f(-)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com