【題目】一個正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設BC的中點為M,GH的中點為N。

(1)請將字母F,G,H標記在正方體相應的頂點處(不需說明理由);

(2)證明:直線MN∥平面BDH;

(3)過點M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.

【答案】見解析

【解析】解:(1)點F,G,H的位置如圖所示.

(2)證明:連接BD,設O為BD的中點,連接OM,OH,AC,BH,MN。

∵M,N分別是BC,GH的中點,

∴OM∥CD,且OM=CD,NH∥CD,且NH=CD,

∴OM∥NH,OM=NH,

則四邊形MNHO是平行四邊形,∴MN∥OH,

又∵MN平面BDH,OH平面BDH,

∴MN∥平面BDH。

(3)由(2)知OM∥NH,OM=NH,連接GM,MH,過點M,N,H的平面就是平面GMH,它將正方體分割為兩個同高的棱柱,高都是GH,底面分別是四邊形BMGF和三角形MGC,

體積比等于底面積之比,即3∶1。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 為圓的直徑,點在圓上, ,矩形所在的平面與圓所以的平面互相垂直,已知.

(1)求證:平面平面;

(2)當的長為何值時,平面與平面所成的銳二面角的大小為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個多面體的直觀圖及三視圖如圖所示,分別是的中點.

I)求證:平面

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)處取最小值.

(1)的值,并化簡

(2)ABC中,分別是角AB, C的對邊,已知,求角C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.

(1)求{an}的通項公式;

(2)設cn=an+bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求證:平面EBC⊥平面EBD;

(2)設M為線段EC上一點,且3EM=EC,試問在線段BC上是否存在一點T,使得MT∥平面BDE,若存在,試指出點T的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點.

(1)求k的取值范圍;

(2)若=12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖(1),(2),(3),(4)為最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第個圖形包含個小正方形.

(1)求出的值;

(2)利用合情推理的“歸納推理思想”,歸納出之間的關系式,并根據(jù)你得到的關系式求出的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

(1)求的值;(2)若對任意的,都有成立,求正數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案