3.定義在(1,+∞)上的函數(shù)f(x)滿足下列兩個條件:(1)對任意的x∈(1,+∞)恒有f(2x)=2f(x)成立; (2)當(dāng)x∈(1,2]時,f(x)=2-x;記函數(shù)g(x)=f(x)-k(x-1),若函數(shù)g(x)恰有兩個零點(diǎn),則實(shí)數(shù)k的取值范圍是$[{\frac{4}{3},2})$.

分析 根據(jù)題中的條件得到函數(shù)的解析式為:f(x)=-x+2b,x∈(b,2b],又因?yàn)閒(x)=k(x-1)的函數(shù)圖象是過定點(diǎn)(1,0)的直線,再結(jié)合函數(shù)的圖象根據(jù)題意求出參數(shù)的范圍即可.

解答 解:∵對任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且當(dāng)x∈(1,2]時,f(x)=2-x,
∴f(x)=-x+2b,x∈(b,2b].
由題意得f(x)=k(x-1)的函數(shù)圖象是過定點(diǎn)(1,0)的直線,
如圖所示紅色的直線與線段AB相交即可(可以與B點(diǎn)重合但不能與A點(diǎn)重合),

∴可得k的范圍為:$[{\frac{4}{3},2})$,
故答案為:$[{\frac{4}{3},2})$.

點(diǎn)評 本題考查函數(shù)解析式的方法以及函數(shù)的圖象與函數(shù)的性質(zhì),考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若函數(shù)$f(x)=sin(ωx+\frac{π}{4})-cos(ωx+\frac{π}{4})(0<ω<2)$在區(qū)間$[-\frac{π}{3},\frac{π}{4}]$上單調(diào)遞增,則ω的最大值為(  )
A.$\frac{3}{2}$B.1C.$\frac{5}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(x2+ax-2a2+3a)ex,其中a∈R.
(1)是否存在實(shí)數(shù)a,使得函數(shù)y=f(x)在R上單調(diào)遞增?若存在,求出a的值或取值范圍;否則,請說明理由.
(2)若a<0,且函數(shù)y=f(x)的極小值為-$\frac{3}{2}$e,求函數(shù)的極大值;
(3)若a=-1時,不等式(m-n)•e≤f(x)≤(m+n)•e-1在[-1,1]上恒成立,求z=m2+n2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.等式x2-px-q<0的解集是{x|2<x<3},則p=5,q=-6則不等式qx2-px-1>0的解集是($-\frac{1}{2},-\frac{1}{3}$ ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)對一切x,y∈R都有f(x+y)=f(x)+f(y),若f(-3)=a,用a表示f(12)=-4a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“若整數(shù)a、b中至少有一個是偶數(shù),則ab是偶數(shù)”的逆否命題為( 。
A.若整數(shù)a,b中至多有一個偶數(shù),則ab是偶數(shù)
B.若整數(shù)a,b都不是偶數(shù),則ab不是偶數(shù)
C.若ab不是偶數(shù),則整數(shù)a,b都不是偶數(shù)
D.若ab不是偶數(shù),則整數(shù)a,b不都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3.
(1)用五點(diǎn)法畫出它在一個周期內(nèi)的閉區(qū)間上的圖象;
(2)指出由函數(shù)y=3sin$\frac{x}{2}$通過怎樣的變換可以得到函數(shù)f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3的圖象并求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若x∈[$\frac{π}{3}$,$\frac{4π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.△ABC中,BC邊上的高所在直線方程為x-2y+1=0,∠A的外角平分線所在直線方程為x+y+4=0,若B點(diǎn)的坐標(biāo)為(4,-2),求A點(diǎn)和C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合S=(-2,8),P={x|a+1<x<2a+5}.集合∅是空集
(1)若P=∅,求實(shí)數(shù)a的取值范圍;
(2)若S∩P=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案