分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于a,b的方程組,求出a,b的值,從而求出函數(shù)的解析式即可;
(2)求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,計(jì)算函數(shù)值,求出n的值即可;
(3)將a=1代入f(x),通過(guò)作差法和換元法結(jié)合函數(shù)的單調(diào)性證明即可.
解答 解:(1)$f'(x)=2x+b-\frac{a}{x}$,所以$\left\{{\begin{array}{l}{f'(1)=2+b-a=-5}\\{f(1)=1+b=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{b=-1}\\{a=6}\end{array}}\right.$,
∴函數(shù)f(x)的解析式為f(x)=x2-x-6lnx(x>0);…(3分)
(2)$f(x)={x^2}-x-6lnx⇒f'(x)=2x-1-\frac{6}{x}=\frac{{2{x^2}-x-6}}{x}$,
因?yàn)楹瘮?shù)f(x)的定義域?yàn)閤>0,
令$f'(x)=\frac{{({2x+3})({x-2})}}{x}=0⇒x=-\frac{3}{2}或x=2$,
當(dāng)x∈(0,2)時(shí),f'(x)<0,f(x)單調(diào)遞減,
當(dāng)x∈(2,+∞)時(shí),f'(x)>0,函數(shù)f(x)單調(diào)遞增,
且函數(shù)f(x)至少有1個(gè)零點(diǎn),而f(1)=0,不符合要求,
$f(3)=6({1-ln3})<0,f(4)=6({2-ln4})=6ln\frac{e^2}{4}>0$,
∴x0∈(3,4),故n=3…(7分)
(3)當(dāng)a=1時(shí),函數(shù)f(x)=x2+bx-lnx,
$f({x_1})=x_1^2+b{x_1}-ln{x_1}=0,f({x_2})=x_2^2+b{x_2}-ln{x_2}=0$,
兩式相減可得:$x_1^2-x_2^2+b({{x_1}-{x_2}})-ln{x_1}+ln{x_2}=0,b=\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}-({{x_1}+{x_2}})$…(9分)
$f'(x)=2x+b-\frac{1}{x},f'({x_0})=2{x_0}+b-\frac{1}{x_0}$,
因?yàn)?{x_0}=\frac{{{x_1}+{x_2}}}{2}$,
所以$f'({x_0})=2×\frac{{{x_1}+{x_2}}}{2}+\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}-({{x_1}+{x_2}})-\frac{2}{{{x_1}+{x_2}}}$,
$\begin{array}{l}=\frac{{ln{x_2}-ln{x_1}}}{{{x_2}-{x_1}}}-\frac{2}{{{x_1}+{x_2}}}=\frac{1}{{{x_2}-{x_1}}}[{ln{x_2}-ln{x_1}-\frac{{2({{x_2}-{x_1}})}}{{{x_1}+{x_2}}}}]\\=\frac{1}{{{x_2}-{x_1}}}[{ln\frac{x_2}{x_1}-\frac{{2({\frac{x_2}{x_1}-1})}}{{\frac{x_2}{x_1}+1}}}]\end{array}$
設(shè)$\frac{x_2}{x_1}=t>1,h(t)=lnt-\frac{{2({t-1})}}{t+1}$,
∴$h'(t)=\frac{1}{t}-\frac{4}{{{{({t+1})}^2}}}=\frac{{{{({t+1})}^2}-4t}}{{t{{({t+1})}^2}}}=\frac{{{{({t-1})}^2}}}{{t{{({t+1})}^2}}}>0$,
所以h(t)在(1,+∞)上為增函數(shù),且h(1)=0,
∴h(t)>0,又$\frac{1}{{{x_2}-{x_1}}}>0$,所以f'(x0)>0…(12分)
點(diǎn)評(píng) 本題考查了曲線(xiàn)的切線(xiàn)方程問(wèn)題,函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及換元思想的應(yīng)用,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{16}$ | B. | $\frac{1}{32}$ | C. | $\frac{1}{64}$ | D. | $\frac{1}{1024}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}i$ | B. | -$\frac{3}{5}$i | C. | $\frac{3}{5}$ | D. | -$\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,0) | B. | (0,1) | C. | (1,1) | D. | (1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1} | B. | {3} | C. | {1,3} | D. | {5,7} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com