【題目】已知橢圓的焦距為,且過點.
(1)求橢圓的方程;
(2)已知,是否存在k使得點A關(guān)于l的對稱點B(不同于點A)在橢圓C上?若存在求出此時直線l的方程,若不存在說明理由.
【答案】(1);(2)不存在,理由見解析;
【解析】
(1)由已知,焦距為,解得.又在橢圓上,,又,聯(lián)立解得,.
(2)當時,直線,點不在橢圓上;當時,可設(shè)直線,即,代入橢圓方程整理得,若點與點關(guān)于的對稱,則其中點在直線上,解得,進而判斷出結(jié)論.
解:(1)由已知,焦距為,解得.
又在橢圓上,,又,
聯(lián)立解得,.
故所求橢圓的方程為:.
(2)當時,直線,點不在橢圓上;
當時,可設(shè)直線,即,
代入橢圓方程整理得,
,
,
若點與點關(guān)于的對稱,則其中點在直線上,
,解得.
因為此時點在直線上,
所以對稱點與點重合,不合題意,所以不存在滿足條件.
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級開設(shè)了豐富多彩的校本課程,現(xiàn)從甲、乙兩個班隨機抽取了5名學生校本課程的學分,統(tǒng)計如下表.
甲 | 8 | 11 | 14 | 15 | 22 |
乙 | 6 | 7 | 10 | 23 | 24 |
用分別表示甲、乙兩班抽取的5名學生學分的方差,計算兩個班學分的方差.得______,并由此可判斷成績更穩(wěn)定的班級是______班.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的右焦點為,右頂點為.已知,其中為原點, 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設(shè)過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了提高學生的身體素質(zhì),某校高一、高二兩個年級共336名學生同時參與了“我運動,我健康,我快樂”的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取7名和5名學生進行測試.下表是高二年級的5名學生的測試數(shù)據(jù)(單位:個/分鐘):
(1)求高一、高二兩個年級各有多少人?
(2)設(shè)某學生跳繩個/分鐘,踢毽個/分鐘.當,且時,稱該學生為“運動達人”.
①從高二年級的學生中任選一人,試估計該學生為“運動達人”的概率;
②從高二年級抽出的上述5名學生中,隨機抽取3人,求抽取的3名學生中為“運動達人”的人數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)為橢圓右頂點,過橢圓的右焦點的直線與橢圓交于,兩點(異于),直線,分別交直線于,兩點. 求證:,兩點的縱坐標之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,已知直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為(t為參數(shù)),其中α∈(0,),以原點O為點x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線C的極坐標方程為ρ﹣2sinθ=0.
(1)寫出直線l1的極坐標方程和曲線C的直角坐標方程;
(2)設(shè)直線l1,l2分別與曲線C交于點A,B(非坐標原點)求|AB|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com