15.已知f(x)是定義在R上的奇函數(shù),且x<0時(shí),f(x)=x2-$\frac{2}{x}$.
(1)求f(0),f(1)的值;
(2)求f(x)的解析式.

分析 (1)根據(jù)奇函數(shù)的性質(zhì),原點(diǎn)處有定義時(shí),f(0)=0,f(1)=-f(-1),即可計(jì)算得解;
(2)根據(jù)求什么設(shè)什么的原則,設(shè)x>0,-x<0,那么f(x)=-f(-x)求函數(shù)的解析式,最后寫(xiě)成分段函數(shù)的性質(zhì).

解答 解:(1)因?yàn)椋汉瘮?shù)是奇函數(shù),
所以:x=0時(shí),f(0)=0,
所以:f(1)=-f(-1)=-[(-1)2-$\frac{2}{-1}$]=-3.
(2)當(dāng)x>0時(shí),-x<0,
所以:$f(x)=-f({-x})=-[{{{({-x})}^2}-({-\frac{2}{x}})}]=-{x^2}-\frac{2}{x}$,
所以:$f(x)=\left\{\begin{array}{l}{x^2}-\frac{2}{x}\;,\;x<0\\ 0\;,\;x=0\\-{x^2}-\frac{2}{x}\;,\;x>0\end{array}\right.$.

點(diǎn)評(píng) 本題考查了利用奇函數(shù)的定義求函數(shù)的解析式的問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=ax2+ln x.
(1)當(dāng)a=-$\frac{1}{2}$時(shí),求f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)性;
(3)設(shè)函數(shù)g(x)=(2a+1)x,若當(dāng)x∈(1,+∞)時(shí),f(x)<g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知sinα=2cosα,則$cos(\frac{7π}{2}-2α)$=( 。
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)y=3sin($\frac{1}{2}$x-$\frac{π}{4}$)
(1)用五點(diǎn)法在給定的坐標(biāo)系中作出函數(shù)的一個(gè)周期的圖象;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求此函數(shù)的圖象的對(duì)稱軸方程、對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)$f(x)={2^{a{x^2}-bx+1}}$,若a是從區(qū)間(0,2)任取的一個(gè)數(shù),b是從區(qū)間(0,2)任取的一個(gè)數(shù),則此函數(shù)在[1,+∞)遞增的概率( 。
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)點(diǎn)P,Q分別是曲線f(x)=x2-lnx和直線x-y-2=0上的動(dòng)點(diǎn),則P,Q兩點(diǎn)間的距離的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$sin2x,x∈R,則函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù),在區(qū)間$(\frac{π}{2},π)$上是增函數(shù)的是( 。
A.y=cosxB.y=|sinx|C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=$\frac{a}{x}$-x,a∈R.
(Ⅰ)若a=-1,求f(x)在區(qū)間[$\frac{1}{2}$,3]上的最大值;
(Ⅱ)設(shè)b≠0,求證:當(dāng)a=-1時(shí),過(guò)點(diǎn)P(b,-b)有且只有一條直線與曲線y=f(x)相切;
(Ⅲ)若對(duì)任意的x∈[$\frac{1}{2}$,2],均有f(x)|x-1|≤1成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案