10.已知函數(shù)$f(x)={2^{a{x^2}-bx+1}}$,若a是從區(qū)間(0,2)任取的一個數(shù),b是從區(qū)間(0,2)任取的一個數(shù),則此函數(shù)在[1,+∞)遞增的概率(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 a、b是從區(qū)間[0,2]上任取的數(shù),故有無窮多種取法,在平面坐標(biāo)系內(nèi)作出a、b對應(yīng)的區(qū)域?yàn)橐徽叫危瘮?shù)f(x)在[1,+∞)上遞增,g(x)=ax2-bx+1在[1,+∞)上遞增,由二次函數(shù)的單調(diào)性可得到a和b的關(guān)系,作出在平面坐標(biāo)系內(nèi)對應(yīng)的區(qū)域,由幾何概型面積之比求概率即可.

解答 解:函數(shù)f(x)在[1,+∞)上遞增,g(x)=ax2-bx+1在[1,+∞)上遞增.
由二次函數(shù)的單調(diào)性可知-$\frac{-b}{2a}$≤1,即2a≥b.
由題意得$\left\{\begin{array}{l}{0≤a≤2}\\{0≤b≤2}\\{2a≥b}\end{array}\right.$,畫出圖示得陰影部分面積.
∴此函數(shù)在[1,+∞)遞增的概率為P=$\frac{2×2-\frac{1}{2}×2×1}{2×2}$=$\frac{3}{4}$.
故選:A.

點(diǎn)評 本題考查幾何概型的求法、二元一次不等式組表示的平面區(qū)域,考查數(shù)形結(jié)合思想解題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=ax+1-2的圖象恒過點(diǎn)A(其中實(shí)數(shù)a滿足a>0且a≠1),若點(diǎn)A在直線mx+ny+2=0上,且mn>0,則$\frac{1}{m}$+$\frac{1}{n}$的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)y=logax+1(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線 $\frac{x}{m}$+$\frac{y}{n}$-4=0(m>0,n>0)上,則$\frac{1}{m}$+$\frac{1}{n}$=4;m+n的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“a=4”是“直線(2+a)x+3ay+1=0與直線(a-2)x+ay-3=0相互平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足${S_n}={({\frac{1}{2}})^n}$-1,則$\underset{lim}{n→+∞}$(a1+a3+…+a2n-1)=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)是定義在R上的奇函數(shù),且x<0時(shí),f(x)=x2-$\frac{2}{x}$.
(1)求f(0),f(1)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對于線性回歸方程$\hat y=\hat bx+\hat a$,下列說法中不正確的是( 。
A.樣本數(shù)據(jù)中x=0時(shí),一定有$y=\hat a$
B.x增加一個單位時(shí),y平均增加$\hat b$個單位
C.樣本數(shù)據(jù)中x=0時(shí),可能有$y=\hat a$
D.直線必經(jīng)過點(diǎn)$(\overline x,\overline y)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在正六棱柱中,不同在任何側(cè)面而且不同在任何底面的兩頂點(diǎn)的連線稱為對角線,那么一個正六棱柱對角線的條數(shù)共有( 。
A.24B.18C.20D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.平面直角坐標(biāo)系xOy中,雙曲線C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線與拋物線C2:x2=2py(p>0)交于點(diǎn)O,A,B.若△OAB的垂心為C2的焦點(diǎn),則C1的漸近線方程為$y=±\frac{{\sqrt{5}}}{2}x$.

查看答案和解析>>

同步練習(xí)冊答案