14.設(shè)10x=3,10y=4.
(1)10x+2y=48.
(2)${10}^{-\frac{y}{2}}$=$\frac{1}{2}$.

分析 直接利用有理指數(shù)冪的運算法則化簡求解即可.

解答 解:(1)10x=3,10y=4.
10x+2y=10x•(10y2=3×42=48.
(2)${10}^{-\frac{y}{2}}$=$\frac{1}{\sqrt{1{0}^{y}}}$=$\frac{1}{2}$.
故答案為:48;$\frac{1}{2}$.

點評 本題考查有理指數(shù)冪的運算法則的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,AB是圓的直徑,弦CD與AB相交于點E,BE=2AE=2,BD=ED,則線段CE的長為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則∠ABC=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.方程3sinx=1+cos2x在區(qū)間[0,2π]上的解為$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個口袋內(nèi)有大小相同標號不同的2個白球,3個黑球,從中任取一個球,則取到白球的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.△ABC中,角A、B、C所對的邊分別為a、b、c,且2acosB=3b-2bcosA.
(1)求$\frac{c}$的值;
(2)設(shè)AB的中垂線交BC于D,若cos∠ADC=$\frac{17}{32}$,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若cosx-cosy=$\frac{1}{2}$,sinx-siny=$\frac{1}{3}$,則sin(x+y)=-$\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$(a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2-x恰好有兩個不相等的實數(shù)解,則a的取值范圍是( 。
A.(0,$\frac{2}{3}$]B.[$\frac{2}{3}$,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{2}{3}$]∪{$\frac{3}{4}$}D.[$\frac{1}{3}$,$\frac{2}{3}$)∪{$\frac{3}{4}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a∈R,函數(shù)f(x)=log2($\frac{1}{x}$+a).
(1)當(dāng)a=5時,解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰好有一個元素,求a的取值范圍.
(3)設(shè)a>0,若對任意t∈[$\frac{1}{2}$,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案