6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$(a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2-x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是( 。
A.(0,$\frac{2}{3}$]B.[$\frac{2}{3}$,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{2}{3}$]∪{$\frac{3}{4}$}D.[$\frac{1}{3}$,$\frac{2}{3}$)∪{$\frac{3}{4}$}

分析 利用函數(shù)是減函數(shù),根據(jù)對(duì)數(shù)的圖象和性質(zhì)判斷出a的大致范圍,再根據(jù)f(x)為減函數(shù),得到不等式組,利用函數(shù)的圖象,方程的解的個(gè)數(shù),推出a的范圍.

解答 解:y=loga(x+1)+1在[0,+∞)遞減,則0<a<1,
函數(shù)f(x)在R上單調(diào)遞減,則:
$\left\{\begin{array}{l}{\frac{3-4a}{2}≥0}\\{0<a<1}\\{{0}^{2}+(4a-3)•0+3a≥lo{g}_{a}(0+1)+1}\end{array}\right.$;
解得,$\frac{1}{3}≤a≤\frac{3}{4}$;
由圖象可知,在[0,+∞)上,|f(x)|=2-x有且僅有一個(gè)解,
故在(-∞,0)上,|f(x)|=2-x同樣有且僅有一個(gè)解,
當(dāng)3a>2即a>$\frac{2}{3}$時(shí),聯(lián)立|x2+(4a-3)x+3a|=2-x,
則△=(4a-2)2-4(3a-2)=0,
解得a=$\frac{3}{4}$或1(舍去),
當(dāng)1≤3a≤2時(shí),由圖象可知,符合條件,
綜上:a的取值范圍為[$\frac{1}{3}$,$\frac{2}{3}$]∪{$\frac{3}{4}$},
故選:C.

點(diǎn)評(píng) 本題考查了方程的解個(gè)數(shù)問題,以及參數(shù)的取值范圍,考查了學(xué)生的分析問題,解決問題的能力,以及數(shù)形結(jié)合的思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)$\overrightarrow{i}$,$\overrightarrow{j}$是兩個(gè)不共線的向量,若$\overrightarrow{AB}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow{BC}$=-3$\overrightarrow{i}$+$\overrightarrow{j}$,$\overrightarrow{DC}$=3$\overrightarrow{i}$+6$\overrightarrow{j}$,則( 。
A.A、B、C三點(diǎn)共線B.A、B、D三點(diǎn)共線C.A、C、D三點(diǎn)共線D.B、C、D三點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)10x=3,10y=4.
(1)10x+2y=48.
(2)${10}^{-\frac{y}{2}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,點(diǎn)E、F分別在AD,CD上,AE=CF,EF交BD于點(diǎn)H,將△DEF沿EF折到△D′EF的位置.
(Ⅰ)證明:AC⊥HD′;
(Ⅱ)若AB=5,AC=6,AE=$\frac{5}{4}$,OD′=2$\sqrt{2}$,求五棱錐D′-ABCFE體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=ax2-a-lnx,g(x)=$\frac{1}{x}$-$\frac{e}{{e}^{x}}$,其中a∈R,e=2.718…為自然對(duì)數(shù)的底數(shù).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)證明:當(dāng)x>1時(shí),g(x)>0;
(Ⅲ)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,B=$\frac{π}{4}$,BC邊上的高等于$\frac{1}{3}$BC,則cosA=( 。
A.$\frac{3\sqrt{10}}{10}$B.$\frac{\sqrt{10}}{10}$C.-$\frac{\sqrt{10}}{10}$D.-$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓的方程x2+y2=1,直線y=x+b,當(dāng)b為何值時(shí):
(1)圓與直線有兩個(gè)公共點(diǎn);
(2)圓與直線只有一個(gè)公共點(diǎn);
(3)圓與直線沒有公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若7個(gè)人排成一排照相,則甲正好站中間的概率是$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=ax-ex沒有極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案