2.用數(shù)字1,2,3,4,5,6,7,8,9組成沒有重復(fù)數(shù)字,且至多有一個(gè)數(shù)字是偶數(shù)的四位數(shù),這樣的四位數(shù)一共有1080個(gè).(用數(shù)字作答)

分析 根據(jù)題意,要求四位數(shù)中至多有一個(gè)數(shù)字是偶數(shù),分2種情況討論:①、四位數(shù)中沒有一個(gè)偶數(shù)數(shù)字,②、四位數(shù)中只有一個(gè)偶數(shù)數(shù)字,分別求出每種情況下四位數(shù)的數(shù)目,由分類計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,分2種情況討論:
①、四位數(shù)中沒有一個(gè)偶數(shù)數(shù)字,即在1、3、5、7、9種任選4個(gè),組成一共四位數(shù)即可,
有A54=120種情況,即有120個(gè)沒有一個(gè)偶數(shù)數(shù)字四位數(shù);
②、四位數(shù)中只有一個(gè)偶數(shù)數(shù)字,
在1、3、5、7、9種選出3個(gè),在2、4、6、8中選出1個(gè),有C53•C41=40種取法,
將取出的4個(gè)數(shù)字全排列,有A44=24種順序,
則有40×24=960個(gè)只有一個(gè)偶數(shù)數(shù)字的四位數(shù);
則至多有一個(gè)數(shù)字是偶數(shù)的四位數(shù)有120+960=1080個(gè);
故答案為:1080.

點(diǎn)評 本題考查排列、組合的綜合應(yīng)用,注意要分類討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$y=\frac{{1+{2^x}}}{{1+{4^x}}}$的值域?yàn)椋ā 。?table class="qanwser">A.$({0,\frac{{\sqrt{2}+1}}{2}}]$B.$({-∞,\frac{{\sqrt{2}+1}}{2}}]$C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為了研究某班學(xué)生的腳長x(單位:厘米)和身高y(單位:厘米)的關(guān)系,從該班隨機(jī)抽取10名學(xué)生,根據(jù)測量數(shù)據(jù)的散點(diǎn)圖可以看出y與x之間有線性相關(guān)關(guān)系,設(shè)其回歸直線方程為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,已知$\sum_{i=1}^{10}$xi=225,$\sum_{i=1}^{10}$yi=1600,$\stackrel{∧}$=4,該班某學(xué)生的腳長為24,據(jù)此估計(jì)其身高為( 。
A.160B.163C.166D.170

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{2x+y≥0}\\{x+2y-2≥0}\\{x≤0}\\{y≤3}\end{array}\right.$,則目標(biāo)函數(shù)z=x+y的最大值為(  )
A.$\frac{2}{3}$B.1C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a∈R,i為虛數(shù)單位,若$\frac{a-i}{2+i}$為實(shí)數(shù),則a的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,離心率為$\frac{1}{2}$.已知A是拋物線y2=2px(p>0)的焦點(diǎn),F(xiàn)到拋物線的準(zhǔn)線l的距離為$\frac{1}{2}$.
(I)求橢圓的方程和拋物線的方程;
(II)設(shè)l上兩點(diǎn)P,Q關(guān)于x軸對稱,直線AP與橢圓相交于點(diǎn)B(B異于A),直線BQ與x軸相交于點(diǎn)D.若△APD的面積為$\frac{\sqrt{6}}{2}$,求直線AP的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知奇函數(shù)f(x)在R上是增函數(shù).若a=-f(${log_2}\frac{1}{5}$),b=f(log24.1),c=f(20.8),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.f(x)=xcosx,f(x)=cos(2π-x)-x3sinx的奇偶性分別為奇函數(shù);偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f″是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.請你根據(jù)這一發(fā)現(xiàn)為條件,若給定函數(shù)g(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x-\frac{5}{12}$,則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=1008.

查看答案和解析>>

同步練習(xí)冊答案