17.已知命題p:?x∈R,不等式x2-mx+$\frac{3}{2}$>0恒成立,命題q:橢圓$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1的焦點在x軸上.若命題p∨q為真命題,求實數(shù)m的取值范圍(-$\sqrt{6}$,3).

分析 先求出命題p,q為真時,m的取值范圍,求其并集可得答案.

解答 解:若?x∈R,不等式x2-mx+$\frac{3}{2}$>0恒成立,
則△=m2-6<0,
解得:m∈(-$\sqrt{6}$,$\sqrt{6}$);
即命題p:m∈(-$\sqrt{6}$,$\sqrt{6}$);
若橢圓$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1的焦點在x軸上.
則m-1>3-m>0,
解得:m∈(2,3),
即命題p:m∈(2,3),
若命題p∨q為真命題,則m∈(-$\sqrt{6}$,3),
故答案為:(-$\sqrt{6}$,3).

點評 本題以命題的真假判斷與應用為載體,考查了復合命題,不等式恒成立,橢圓的標準方程等知識點,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{c}$,$\overrightarrow{DA}$=$\overrightarrownvbbpbf$,且$\overrightarrow{a}$•$\overrightarrow$=0,$\overrightarrow$•$\overrightarrow{c}$=0,|$\overrightarrow{a}$|≠|(zhì)$\overrightarrow{c}$|,試判定四邊形ABCD是什么圖形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{3x}{2x+3}$,數(shù)列{an}滿足a1=1,an+1=f(an),n∈N*,
(1)求a2,a3,a4的值;
(2)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列;
(3)設數(shù)列{bn}滿足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2015}{2}$對一切n∈N*成立,求最小正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,左,右焦點分別為F1,F(xiàn)2,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線$x-y+\sqrt{2}=0$相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若不過原點且斜率存在的直線l交橢圓C于點G,H,且△OGH的面積為1,線段GH的中點為P,在x軸上是否存在關于原點對稱的兩個定點M,N,使得直線PM,PN的斜率之積為定值?若存在,求出兩定點M,N的坐標和定值的大小;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設t是1的立方根,則A={x|x=tn+$\frac{1}{{t}^{n}}$,n∈Z},則A={-1,2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設函數(shù)f(x)=ex-|ln(-x)|的兩個零點為x1,x2,則(  )
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在平面直角坐標系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=l (a>b>0)的焦距為2,離心率為$\frac{\sqrt{2}}{2}$,橢圓的右頂點為A.
(1)求該橢圓的方程:
(2)過點D($\sqrt{2}$,-$\sqrt{2}$)作直線PQ交橢圓于兩個不同點P,Q,求證:直線AP,AQ的
斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設向量$\overrightarrow{a}$、$\overrightarrow$的夾角為θ(其中0<θ≤π),|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,若(2$\overrightarrow{a}$-$\overrightarrow$)⊥(k$\overrightarrow{a}$+$\overrightarrow$),則實數(shù)k的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若正數(shù)x,y滿足$\frac{1}{y}+\frac{3}{x}=1$,則3x+4y的最小值是(  )
A.24B.28C.25D.26

查看答案和解析>>

同步練習冊答案