【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為,過直線上一點(diǎn)引曲線的切線,切點(diǎn)為,求的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上有兩定點(diǎn)A、B,該平面上一動點(diǎn)P與兩定點(diǎn)A、B的連線的斜率乘積等于常數(shù),則動點(diǎn)P的軌跡可能是下面哪種曲線:①直線;②圓;③拋物線;④雙曲線;⑤橢圓_____(將所有可能的情況用序號都寫出來)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)有唯一零點(diǎn);
(2)若對任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱臺的上下底面分別是邊長為2和4的正方形, = 4且 ⊥底面,點(diǎn)為的中點(diǎn).
(Ⅰ)求證: 面 ;
(Ⅱ)在邊上找一點(diǎn),使∥面,
并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,為的中點(diǎn),平面,垂足落在線段上,為的重心,已知,,,.
(1)證明:平面;
(2)求異面直線與所成角的余弦值;
(3)設(shè)點(diǎn)在線段上,使得,試確定的值,使得二面角為直二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,給出滿足的條件,就能得到動點(diǎn)的軌跡方程,下表給出了一些條件及方程:
條件 | 方程 |
① 周長為 | |
②面積為 | |
③中, |
則滿足條件①,②,③的軌跡方程依次為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線y2=4x焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),交其準(zhǔn)線于點(diǎn)C,且A、C位于x軸同側(cè),若|AC|=2|AF|,則|BF|等于( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王老師的班上有四個(gè)體育健將甲、乙、丙、丁,他們都特別擅長短跑,在某次運(yùn)動會上,他們四人要組成一個(gè)米接力隊(duì),王老師要安排他們四個(gè)人的出場順序,以下是他們四人的對話:
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;。喝绻也慌艿诙,我就不跑第一棒;
王老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求, 據(jù)此我們可以斷定,在王老師安排的出場順序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com