4.已知a、b、c分別為△ABC的三個(gè)內(nèi)角A、B、C的對邊,若a=$\sqrt{6}$,b=2,B=45°,則角A等于( 。
A.60°B.120°C.60°或120°D.30°

分析 根據(jù)題意和正弦定理求出sinA,由邊的關(guān)系和角A的范圍求出A的值.

解答 解:在△ABC中,∵a=$\sqrt{6}$,b=2,B=45°,
∴由正弦定理得$\frac{a}{sinA}=\frac{sinB}$,
則sinA=$\frac{a•sinB}$=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵a>b,且0°<A<180°,∴A=60°或120°,
故選:C.

點(diǎn)評 本題考查正弦定理的應(yīng)用,注意邊角關(guān)系和內(nèi)角的范圍,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求證:PC⊥BC;
(2)求三棱錐A-BCP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,短軸兩個(gè)端點(diǎn)為A,B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓C的方程;
(2)設(shè)P是橢圓C上一點(diǎn),M($\frac{1}{2}$,0)為橢圓長軸上一點(diǎn),求|PM|的最大值與最小值;
(3)設(shè)Q是橢圓外C的動(dòng)點(diǎn),滿足|$\overrightarrow{{F_1}Q}$|=4,點(diǎn)R是線段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線段F2Q上,并且滿足$\overrightarrow{RT}$•$\overrightarrow{T{F_2}}$=0,|$\overrightarrow{T{F_2}}$|≠0,求點(diǎn)T的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線G:$\frac{x^2}{a^2}-{y^2}$=1(a>0)的左頂點(diǎn)為A,若雙曲線G的一條漸近線與直線AM平行,則實(shí)數(shù)a的值為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),過點(diǎn)Q($\sqrt{2}$,1),右焦點(diǎn)F($\sqrt{2}$,0),
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=k(x-1)分別交x軸,y軸于C,D兩點(diǎn),且與橢圓C交于M,N兩點(diǎn),若$\overrightarrow{CN}=\overrightarrow{MD}$,求k值;
(Ⅲ)自橢圓C上異于其頂點(diǎn)的任意一點(diǎn)P,作圓O:x2+y2=2的兩條切線切點(diǎn)分別為P1,P2,若直線P1P2在x軸,y軸上的截距分別為m,n,證明:$\frac{1}{m^2}+\frac{2}{n^2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={2,3,4,6},B={2,4,5,7},則A∩B的子集的個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題p:?x<0,x2<2x,則命題¬p為( 。
A.?x0<0,x02<2${\;}^{{x}_{0}}$B.?x0≥0,x02≥2${\;}^{{x}_{0}}$
C.?x0<0,x02≥2${\;}^{{x}_{0}}$D.?x0≥0,x02<2${\;}^{{x}_{0}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知四棱錐P-ABCD中,底面ABCD是矩形,PD=AB=2AD=2,PC=2$\sqrt{2}$,M,N分別是CD,PB的中點(diǎn),
(1)求證:MN∥平面PAD;
(2)若E為AD的中點(diǎn),求三棱錐D-EMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)定義在R上,f′(x)是f(x)的導(dǎo)函數(shù),且f′(x)<$\frac{1}{2}$,f(1)=1,則不等式f(x)<$\frac{x}{2}$+$\frac{1}{2}$的解集為( 。
A.{x|x<-1}B.{x|x>1}C.{x|x<-1或x>1}D.{x|-1<x<1}

查看答案和解析>>

同步練習(xí)冊答案