3.已知E,F(xiàn),G,H依次為空間四邊形ABCD各邊的中點(diǎn).
(1)求證:E,F(xiàn),G,H四點(diǎn)共面;
(2)若AC與BD相互垂直,BD=2,AC=4,求EG2+HF2
(3)若$EG=\sqrt{7},BD=2,AC=4$,求直線BD與AC的夾角.

分析 (1)如圖所示,E,F(xiàn),G,H依次為空間四邊形ABCD各邊的中點(diǎn),利用三角形中位線定理可得:EF∥GH,即可證明E,F(xiàn),G,H四點(diǎn)共面.
(2)由AC=4,EF=2;同理可得:EH=1.可得四邊形EFGH為矩形.利用勾股定理即可得出:EG2+HF2
(3)由(1)可知:∠EFG或其補(bǔ)角為直線BD與AC的夾角.利用余弦定理即可得出.

解答 (1)證明:如圖所示,∵E,F(xiàn),G,H依次為空間四邊形ABCD各邊的中點(diǎn),
∴EF$\underset{∥}{=}$$\frac{1}{2}$AC,GH$\underset{∥}{=}$$\frac{1}{2}$AC,
∴EF$\underset{∥}{=}$GH,
∴四邊形EFGH為平行四邊形.
∴E,F(xiàn),G,H四點(diǎn)共面.
(2)解:∵AC=4,∴EF=2;同理可得:EH=1.
又AC⊥BD,∴EF⊥EH,
可得四邊形EFGH為矩形.
∴EG2+HF2=2×(22+12)=10.
(3)解:由(1)可知:∠EFG或其補(bǔ)角為直線BD與AC的夾角.
cos∠EFG=$\frac{{2}^{2}+{1}^{2}-(\sqrt{7})^{2}}{2×2×1}$=-$\frac{1}{2}$,
∴直線BD與AC的夾角為60°

點(diǎn)評(píng) 本題考查了空間位置關(guān)系、空間角、平行四邊形與矩形的性質(zhì)、三角形中位線定理、余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,已知四邊形ABCD是矩形,AB=2BC=2,三角形PAB是正三角形,且平面ABCD⊥平面PCD.
(Ⅰ)若O是CD的中點(diǎn),證明:BO⊥PA;
(Ⅱ)求平面PAB與平面PAD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.2012年中華人民共和國(guó)環(huán)境保護(hù)部批準(zhǔn)《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》為國(guó)家環(huán)境質(zhì)量標(biāo)準(zhǔn),該標(biāo)準(zhǔn)增設(shè)和調(diào)整了顆粒物、二氧化氮、鉛、笨等的濃度限值,并從2016年1月1日起在全國(guó)實(shí)施.空氣質(zhì)量的好壞由空氣質(zhì)量指數(shù)確定,空氣質(zhì)量指數(shù)越高,代表空氣污染越嚴(yán)重,某市對(duì)市轄的某兩個(gè)區(qū)加大了對(duì)空氣質(zhì)量的治理力度,從2015年11月1日起監(jiān)測(cè)了100天的空氣質(zhì)量指數(shù),并按照空氣質(zhì)量指數(shù)劃分為:指標(biāo)小于或等于115為通過(guò),并引進(jìn)項(xiàng)目投資.大于115為未通過(guò),并進(jìn)行治理.現(xiàn)統(tǒng)計(jì)如下.
空氣質(zhì)量指數(shù)(0,35](35,75](75,115](115,150](150,250]>250
空氣質(zhì)量類別優(yōu)輕度污染中度污染重度污染嚴(yán)重污染
甲區(qū)天數(shù)1320422032
乙區(qū)天數(shù)832401622
(Ⅰ)以頻率值作為概率值,求甲區(qū)和乙區(qū)通過(guò)監(jiān)測(cè)的概率;
(Ⅱ)對(duì)于甲區(qū),若通過(guò),引進(jìn)項(xiàng)目可增加稅收40(百萬(wàn)元),若沒(méi)通過(guò)監(jiān)測(cè),則治理花費(fèi)5(百萬(wàn)元);對(duì)于乙,若通過(guò),引進(jìn)項(xiàng)目可增加稅收50(百萬(wàn)元),若沒(méi)通過(guò)監(jiān)測(cè),則治理花費(fèi)10(百萬(wàn)元).在(Ⅰ)的前提下,記X為通過(guò)監(jiān)測(cè),引進(jìn)項(xiàng)目增加的稅收總額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)求焦點(diǎn)在x軸上,$c=\sqrt{6}$且經(jīng)過(guò)點(diǎn)(-5,2)的雙曲線的標(biāo)準(zhǔn)方程.
(2)已知雙曲線上兩點(diǎn)P1,P2的坐標(biāo)分別為$(3,-4\sqrt{2}),(\frac{9}{4},5)$,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某一扇型的鐵皮,半徑長(zhǎng)為1,圓心角為$\frac{π}{3}$,今想從中剪下一個(gè)矩形ABCD,如圖所示,設(shè)∠COP=α,試問(wèn)當(dāng)α取何值時(shí),矩形ABCD的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某校現(xiàn)有高一學(xué)生210人,高二學(xué)生270人,高三學(xué)生300人,用分層抽樣的方法從這三個(gè)年級(jí)的學(xué)生中隨機(jī)抽取n名學(xué)生進(jìn)行問(wèn)卷調(diào)查,如果已知從高一學(xué)生中抽取的人數(shù)為7,那么從高二學(xué)生中抽取的人數(shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某地最近十年糧食需求量逐年上升,如表是部分統(tǒng)計(jì)數(shù)據(jù)
第x年12345
需求量(萬(wàn)噸)36578
(1)利用所給數(shù)據(jù)求兩變量之間的回歸方程
(2)利用(1)中所求出的回歸直線方程預(yù)測(cè)該地第6年的糧食需求量
附:回歸直線方程的斜率和截距的最小二乘估計(jì)分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
$\bar x$$\bar y$$\bar w$$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^8{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}$$\sum_{i=1}^8{({w_i}-\overline w)({y_i}-\overline y)}$
46.65636.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\bar w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與$y=c+d\sqrt{x}$,哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說(shuō)明理由);
(Ⅱ)根據(jù)( I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為z=0.2y-x,根據(jù)( II)的結(jié)果回答下列問(wèn)題:
(i)當(dāng)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值時(shí)多少?
(ii)當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線v=α+βu的斜率和截距的最小二乘估計(jì)分別為:$\hat β=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\bar v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$,$\hat α=\overline v-\hat β\overline u$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=ln(x+1)-ax,g(x)=1-ex.(a為常數(shù),其中e是自然對(duì)數(shù)的底數(shù))
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x≥0時(shí),函數(shù)f(x)的圖象恒在g(x)的圖象上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案