【題目】已知拋物線Γ的準(zhǔn)線方程為.焦點(diǎn)為.
(1)求證:拋物線Γ上任意一點(diǎn)的坐標(biāo)都滿足方程:
(2)請(qǐng)求出拋物線Γ的對(duì)稱性和范圍,并運(yùn)用以上方程證明你的結(jié)論;
(3)設(shè)垂直于軸的直線與拋物線交于兩點(diǎn),求線段的中點(diǎn)的軌跡方程.
【答案】(1)證明見解析(2)關(guān)于對(duì)稱.證明見解析(3)(在拋物線內(nèi))
【解析】
(1)由拋物線的定義可得|PF|=d(d為P到準(zhǔn)線的距離),運(yùn)用兩點(diǎn)的距離公式和點(diǎn)到直線的距離公式,化簡可得所求軌跡方程;
(2)由拋物線的方程的特點(diǎn),考慮點(diǎn)關(guān)于直線y=x的對(duì)稱點(diǎn)的特征和對(duì)稱軸與準(zhǔn)線和拋物線的交點(diǎn)的關(guān)系,以及直線和拋物線相切的特點(diǎn),可得所求范圍;
(3)設(shè)垂直于x軸的直線為x=t,代入拋物線的方程x2﹣2xy+y2﹣8x﹣8y=0,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,以及參數(shù)方程化為普通方程可得所求軌跡方程.
(1)拋物線Γ的準(zhǔn)線方程為x+y+2=0,焦點(diǎn)為F(1,1),
拋物線Γ上任意一點(diǎn)P的坐標(biāo)(x,y),由拋物線的定義可得|PF|=d(d為P到準(zhǔn)線的距離),即為,兩邊平方化簡可得x2﹣2xy+y2﹣8x﹣8y=0;
(2)拋物線關(guān)于y=x對(duì)稱,頂點(diǎn)為(0,0),范圍為x≥﹣1,y≥﹣1,
由方程x2﹣2xy+y2﹣8x﹣8y=0,
設(shè)拋物線上任一點(diǎn)(x,y)關(guān)于直線y=x對(duì)稱的點(diǎn)為(y,x),滿足原方程,
則拋物線關(guān)于直線y=x對(duì)稱;
由直線y﹣1=x﹣1即y=x,聯(lián)立x+y+2=0,解得x=y=﹣1,
可得拋物線的頂點(diǎn)為(0,0);
由x=﹣1和x2﹣2xy+y2﹣8x﹣8y=0聯(lián)立可得切點(diǎn)為(﹣1,3),
同樣由y=﹣1和x2﹣2xy+y2﹣8x﹣8y=0聯(lián)立可得切點(diǎn)為(3,﹣1),
可得拋物線的范圍為x≥﹣1,y≥﹣1;
(3)設(shè)垂直于x軸的直線為x=t,代入拋物線的方程x2﹣2xy+y2﹣8x﹣8y=0,
可得t2﹣(2t+8)y+ t2﹣8t=0,
設(shè)A(t,y1),B(t,y2),可得y1+y2=2t+8,
則AB的中點(diǎn)為(t,t+4),
則AB的中點(diǎn)的軌跡方程為直線y=x+4(在拋物線內(nèi)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為正方形,平面平面,且為等邊三角形,若四棱錐的體積與四棱錐外接球的表面積大小之比為,則四棱錐的表面積為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè)命題:,方程存在實(shí)數(shù)解;命題:不等式對(duì)任意恒成立.
(1)若為真命題,則的取值范圍;
(2)若為假命題,為真命題,求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計(jì)學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組,,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)用樣本數(shù)據(jù)估計(jì)該校的2000名學(xué)生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表該組數(shù)據(jù)平均值);
(3)若從樣本成績屬于第六組和第八組的所有學(xué)生中隨機(jī)抽取2名,求他們的分差的絕對(duì)值小于10分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓()的離心率是,點(diǎn)在短軸上,且。
(1)球橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,橢圓經(jīng)過橢圓C1的左焦點(diǎn)F 和上下頂點(diǎn)A,B.設(shè)斜率為k的直線l與橢圓C2相切,且與橢圓C1交于P,Q兩點(diǎn).
(1)求橢圓C2的方程;
(2)①若,求k的值;
②求PQ弦長最大時(shí)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人某天的工作是:駕車從地出發(fā),到兩地辦事,最后返回地,三地之間各路段行駛時(shí)間及當(dāng)天降水概率如表:
路段 | 正常行駛所需時(shí)間(小時(shí)) | 上午降水概率 | 下午降水概率 |
2 | 0.3 | 0.6 | |
2 | 0.2 | 0.7 | |
3 | 0.3 | 0.9 |
若在某路段遇到降水,則在該路段行駛的時(shí)間需延長1小時(shí),現(xiàn)有如下兩個(gè)方案:
方案甲:上午從地出發(fā)到地辦事,然后到達(dá)地,下午在地辦事后返回地;
方案乙:上午從地出發(fā)到地辦事,下午從地出發(fā)到達(dá)地, 辦事后返回地.
(1)設(shè)此人8點(diǎn)從地出發(fā),在各地辦事及午餐的累積時(shí)間為2小時(shí).且采用方案甲,求他當(dāng)日18點(diǎn)或18點(diǎn)之前能返回地的概率;
(2)甲、乙兩個(gè)方案中,哪個(gè)方案有利于辦完事后能更早返回地?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面四邊形ABCD中,,,且.將沿BD折成如圖2所示的三棱錐,使.
(1)證明:;
(2)求三棱錐與三棱錐的高的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,對(duì)于任意的,都有.
(1)求數(shù)列的首項(xiàng)及數(shù)列的遞推關(guān)系式;
(2)若數(shù)列成等比數(shù)列,求常數(shù)的值,并求數(shù)列的通項(xiàng)公式;
(3)數(shù)列中是否存在三項(xiàng)、、,它們組成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的項(xiàng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com