11.在△ABC中,角A,B,C所對的邊分別為a,b,c,A=$\frac{π}{4}$,sinA+sin(B-C)=2$\sqrt{2}$sin2C且△ABC的面積為1,則
BC邊的長為$\sqrt{5}$.

分析 由sinA+sin(B-C)=2$\sqrt{2}$sin2C,利用和差公式、倍角公式展開可得sinB=2$\sqrt{2}$sinC,利用正弦定理可得b=2$\sqrt{2}$c.再利用余弦定理與三角形面積計算公式即可得出.

解答 解:在△ABC中,∵sinA+sin(B-C)=2$\sqrt{2}$sin2C,
∴sinBcosC+cosBsinC+sinBcosC-cosBsinC=2$\sqrt{2}$sin2C,
∴2sinBcosC=4$\sqrt{2}$sinCcosC
∵cosC≠0,
∴sinB=2$\sqrt{2}$sinC,
∴b=2$\sqrt{2}$c.
∵A=$\frac{π}{4}$,
∴由余弦定理可得:a2=(2$\sqrt{2}$c)2+c2-2×2$\sqrt{2}$c2cos$\frac{π}{4}$=5c2
∵△ABC的面積為1,
∴$\frac{1}{2}$bcsinA=1,
∴$\frac{1}{2}$×2$\sqrt{2}$×sin$\frac{π}{4}$=1,解得c2=1.
則a=$\sqrt{5}$.
故答案為:$\sqrt{5}$

點(diǎn)評 本題考查了正弦定理、余弦定理、和差公式、倍角公式、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.動點(diǎn)P滿足$\sqrt{(x-2)^{2}+{y}^{2}}$+$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$=2$\sqrt{3}$
(1)求動點(diǎn)P的軌跡F1,F(xiàn)2的方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為$\frac{\sqrt{3}}{2}$,求△OAB面 積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,飛機(jī)的航線和山頂在同一個鉛垂平面內(nèi),已知飛機(jī)的高度為海拔15000 m,速度為1000 km/h,飛行員先看到山頂?shù)母┙菫?5°,經(jīng)過108s后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹?5-10$\sqrt{3}$km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有-段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里:駑馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎駑馬,二馬相逢,問:需9日相逢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某市為評選“全國衛(wèi)生城市”,從200名志愿者中隨機(jī)抽取40名志愿者參加街道衛(wèi)生監(jiān)督活動,經(jīng)過統(tǒng)計這些志愿者的年齡介于25歲和55歲之間,為方便安排任務(wù),將所有志愿者按年齡從小到大分成六組,依次為[25,30),[30,35),[35,40),[40,45),[45,50),[50,55],如圖是按照上述分組方法得到的頻率分布直方圖的一部分,已知第四組[40,45)的人數(shù)為4人.
(1)求第五組的頻率并估計200名志愿者中年齡在40歲以上(含40歲)的人數(shù);
(2)若從年齡位于第四組和第六組的志愿者中隨機(jī)抽取兩名,記他們的年齡分別為x,y,事件E={|x-y|≤5},求P(E).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?x∈R,ax2+2x+3>0.若命題p為假命題,則實數(shù)a的取值范圍是( 。
A.{a|a<$\frac{1}{3}$}B.{a|0<a≤$\frac{1}{3}$}C.{a|a≤$\frac{1}{3}$}D.{a|a≥$\frac{1}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若集合$A=\left\{{y\left|{y={x^{\frac{1}{3}}}}\right.}\right\},B=\left\{{x\left|{y=ln({x-1})}\right.}\right\}$,則A∩B=( 。
A.[1,+∞)B.(0,1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足xf'(x)+f(x)>x,則不等式$({x-4})f({x-4})-4f(4)<\frac{x^2}{2}-4x$的解集為(-∞,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a13成等比數(shù)列,若a1=1,Sn為數(shù)列{an}的前n項和,則$\frac{2{S}_{n}+16}{{a}_{n}+3}$的最小值為(  )
A.4B.3C.2$\sqrt{3}$-2D.2

查看答案和解析>>

同步練習(xí)冊答案