【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為原點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)設(shè)直線軸的交點為,過點作傾斜角為的直線與曲線交于兩點,求的最大值.

【答案】(1),;(2)2

【解析】

1)由得曲線C的普通方程為:y21,由ρsinθρsinθcosθ,得直線l的直角坐標(biāo)方程為:x+y10;(2)先求出直線l的參數(shù)方程的標(biāo)準(zhǔn)形式,并利用參數(shù)t的幾何意義可得.

(1)因為直線的極坐標(biāo)方程為,所以

因為曲線的參數(shù)方程為為參數(shù)),所以曲線

(2)由,設(shè)直線的參數(shù)方程為為參數(shù))

代入曲線,易知

因為

,,

所以

故得到:以當(dāng)時,的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點,橢圓的焦距為,直線截圓與橢圓所得的弦長之比為,圓、橢圓軸正半軸的交點分別為,.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點)為橢圓上一點,點關(guān)于軸的對稱點為,直線,分別交軸于點,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計小張三次射擊恰有兩次命中十環(huán)的概率,先由計算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定2,46,8表示命中十環(huán),013,5,7,9表示未命中十環(huán),再以每三個隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

321 421 292 925 274 632 800 478 598 663 531 297 396

021 506 318 230 113 507 965

據(jù)此估計,小張三次射擊恰有兩次命中十環(huán)的概率為()

A. 0.25B. 0.30C. 0.35D. 0.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點為,點在橢圓上.

(1)設(shè)點到直線的距離為,證明:為定值;

(2)若是橢圓上的兩個動點(都不與重合),直線的斜率互為相反數(shù),當(dāng)時,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點在坐標(biāo)原點,焦點在軸負(fù)半軸上,過點作直線與拋物線相交于兩點,且滿足.

1)求直線和拋物線的方程;

2)當(dāng)拋物線上一動點從點運(yùn)動到點時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,.若,與兩坐標(biāo)軸圍成的四邊形有一個外接圓,則________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的前項和為,已知,且.

1)求的通項公式.

2)設(shè),數(shù)列的前項和為,求使不等式成立的最小的正整數(shù).

3)設(shè).若數(shù)列單調(diào)遞增.

①求的取值范圍.

②若是符合條件的最小正整數(shù),那么中是否存在三項依次成等差數(shù)列?若存在,給出的值.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點恰好是橢圓的右焦點.

1)求實數(shù)的值及拋物線的準(zhǔn)線方程;

2)過點任作兩條互相垂直的直線分別交拋物線、點,求兩條弦的弦長之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC90°,,,若MPA的中點,PCDE交于點N.

1)求證:AC∥面MDE;

2)求證:PEMD

3)求點N到平面ABM的距離.

查看答案和解析>>

同步練習(xí)冊答案