【題目】如圖,拋物線的頂點在坐標(biāo)原點,焦點在軸負(fù)半軸上,過點作直線與拋物線相交于兩點,且滿足.

1)求直線和拋物線的方程;

2)當(dāng)拋物線上一動點從點運動到點時,求面積的最大值.

【答案】1)直線的方程為,拋物線方程為2

【解析】

(1)設(shè)直線的方程為,拋物線方程為,再聯(lián)立方程利用韋達(dá)定理表達(dá),繼而求得直線的斜率與方程.

(2)根據(jù)當(dāng)拋物線過點的切線與平行時,面積最大,利用導(dǎo)數(shù)的幾何意義求解.或者設(shè)點,再表達(dá)出面積根據(jù)參數(shù)的范圍分析面積表達(dá)式再求最值即可.

1)據(jù)題意可設(shè)直線的方程為,

拋物線方程為

,

得,.

設(shè)點,

,.

所以

因為,

所以,解得

故直線的方程為,拋物線方程為.

2)解法一:據(jù)題意,當(dāng)拋物線過點的切線與平行時,面積最大

設(shè)點,因為,

,所以.

此時,點到直線的距離.

,得,.

所以

.

面積的最大值為.

解法二:由,得,.

所以

.

設(shè)點,點到直線的距離為,

,

當(dāng)時,,此時點.

面積的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)當(dāng)時,恒有,求實數(shù)的取值范圍.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國時期吳國數(shù)學(xué)家趙爽所注《周牌算經(jīng)》中給出了勾股定理的絕妙證明.右面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實黃實,利用(股勾)朱實黃實弦實,化簡,得勾,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù),

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線過點(3,-2)且與橢圓4x2+9y2=36有相同的焦點.

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)若點M在雙曲線上,F(xiàn)1,F(xiàn)2為左、右焦點,且|MF1|+|MF2|=6,試判別△MF1F2的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為原點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)設(shè)直線軸的交點為,過點作傾斜角為的直線與曲線交于兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為原點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)設(shè)直線軸的交點為,過點作傾斜角為的直線與曲線交于兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黃河被稱為我國的母親河,它的得名據(jù)說來自于河水的顏色,黃河因攜帶大量泥沙所以河水呈現(xiàn)黃色, 黃河的水源來自青海高原,上游的1000公里的河水是非常清澈的.只是中游流經(jīng)黃土高原,又有太多攜帶有大量泥沙的河流匯入才造成黃河的河水逐漸變得渾濁.在劉家峽水庫附近,清澈的黃河和攜帶大量泥沙的洮河匯合,在兩條河流的交匯處,水的顏色一清一濁,互不交融,涇渭分明,形成了一條奇特的水中分界線,設(shè)黃河和洮河在汛期的水流量均為2000,黃河水的含沙量為,洮河水的含沙量為,假設(shè)從交匯處開始沿岸設(shè)有若干個觀測點,兩股河水在流經(jīng)相鄰的觀測點的過程中,其混合效果相當(dāng)于兩股河水在1秒內(nèi)交換的水量,即從洮河流入黃河的水混合后,又從黃河流入的水到洮河再混合.

1)求經(jīng)過第二個觀測點時,兩股河水的含沙量;

2)從第幾個觀測點開始,兩股河水的含沙量之差小于?(不考慮泥沙沉淀)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),是自然對數(shù)的底數(shù),)存在唯一的零點,則實數(shù)的取值范圍為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】AB是圓O的直徑,點C是圓O上異于AB的動點,過動點C的直線VC垂直于圓O所在平面,DE分別是VA,VC的中點.

1)判斷直線DE與平面VBC的位置關(guān)系,并說明理由;

2)當(dāng)△VAB為邊長為的正三角形時,求四面體VDEB的體積.

查看答案和解析>>

同步練習(xí)冊答案