10.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=7,S9=27.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)利用已知條件列出方程,求出數(shù)列的首項(xiàng)與公差,然后求解等差數(shù)列的通項(xiàng)公式.
(2)求出數(shù)列變號(hào)的項(xiàng),然后求解等差數(shù)列前n(n≤6)項(xiàng)的和,再求解 n>6的數(shù)列的和.

解答 解:(1)等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=7,S9=27.可得a1+2d=7,9a1+36d=27,
解得a1=11,d=-2,
∴an=-2n+13;
(2)因?yàn)閍n=-2n+13,所以,a6=1,a7=-1,
當(dāng)n≤6且n∈N*時(shí),Tn=a1+a2+…+${a_n}=-{n^2}+12n$,
當(dāng)n≥7且n∈N*時(shí),Tn=(a1+a2+…+a6)-(a7+a8+…+an)=n2-12n+72,
綜上,${T_n}=\left\{\begin{array}{l}-{n^2}+12n,n≤6,n∈{N^*}\\{n^2}-12n+72,n≥7,n∈{N^*}\end{array}\right.$

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式的求法,數(shù)列求和,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知點(diǎn)M(-lna,0),N(lna,0),其中a>1,若圓C:x2+(y-2)2=1上不存在點(diǎn)P,使得∠MPN=90°,則實(shí)數(shù)a的取值范圍是(1,e)∪(e3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知向量$\vec m$=($\sqrt{3}$sinx,sinx),$\vec n$=(cosx,sinx).
(1)若$\vec m∥\vec n$且$x∈[{0,\frac{π}{2}}]$,求角x;
(2)若f(x)=$\overrightarrow m•\overrightarrow n$,函數(shù)g(x)=f(x+$\frac{π}{12}$),求函數(shù)g(x)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=ln(x+a)+ax(a∈R).
(1)當(dāng)a=-1時(shí),求函數(shù)y=f(x)的極值;
(2)討論函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.(3+x)(1-2x)5展開式中,x2項(xiàng)的系數(shù)為(  )
A.-150B.70C.90D.110

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=3x+m(m為常數(shù)),則f(-2)的值為( 。
A.$-\frac{8}{9}$B.$-\frac{1}{9}$C.-8D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說法正確的是(  )
A.在統(tǒng)計(jì)學(xué)中,回歸分析是檢驗(yàn)兩個(gè)分類變量是否有關(guān)系的一種統(tǒng)計(jì)方法
B.線性回歸方程對(duì)應(yīng)的直線$\widehat{y}$=$\widehat$x+$\widehat{a}$至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1,y1),(x2,y2),(x3,y3),(xn,yn)中的一個(gè)點(diǎn)
C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.在回歸分析中,相關(guān)指數(shù)R2為0.98的模型比相關(guān)指數(shù)R2為0.80的模型擬合的效果差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.從A地到B地,可乘汽車、火車、輪船三種交通工具,如果一天內(nèi)汽車發(fā)3次,火車發(fā)4次,輪船發(fā)2次,那么一天內(nèi)乘坐這三種交通工具的不同走法為( 。
A.1+1+1=3B.3+4+2=9C.3×4×2=24D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列四個(gè)說法中,正確說法的個(gè)數(shù)是( 。
①若p∨q為真命題,則p∧q為真命題;
②設(shè)命題p:?n∈N,n2>2n,則?p:?x∈N,n2<2n;
③命題$p:?α∈R,cos(α+\frac{3π}{2})+sin(α-π)=0$為真命題;
④平面四邊形ABCD中,$\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow 0,(\overrightarrow{AB}-\overrightarrow{AD})•\overrightarrow{AC}=0$,則四邊形ABCD是矩形.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案