15.設(shè)等比數(shù)列{an}滿足a1+a3=10,a2+a4=5,則a1a2…an的最大值為( 。
A.61B.62C.63D.64

分析 求出數(shù)列的等比與首項,化簡a1a2…an,然后求解最值.

解答 解:等比數(shù)列{an}滿足a1+a3=10,a2+a4=5,
可得q(a1+a3)=5,解得q=$\frac{1}{2}$.
a1+q2a1=10,解得a1=8.
則a1a2…an=a1n•q1+2+3+…+(n-1)=8n•($\frac{1}{2}$)${\;}^{\frac{n(n+1)}{2}}$=2${\;}^{3n-\frac{{n}^{2}-n}{2}}$=${2}^{\frac{7n{-n}^{2}}{2}}$,
當(dāng)n=3或4時,表達式取得最大值:2${\;}^{\frac{12}{2}}$=26=64.
故選:D.

點評 本題考查數(shù)列的性質(zhì)數(shù)列與函數(shù)相結(jié)合的應(yīng)用,轉(zhuǎn)化思想的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.從集合M={1,2,3,4}中任取三個元素組成三位數(shù).記組成三位數(shù)的三個數(shù)字中偶數(shù)個數(shù)為ζ,則ζ的數(shù)學(xué)期望為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線2x-y+m=0和圓O:x2+y2=5,
(1)m為何值時,沒有公共點;
(2)m為何值時,截得的弦長為2;
(3)若直線和圓交于A、B兩點,此時OA⊥OB,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.命題“?x>0,x2+x-2>0”的否定是?x>0,x2+x-2≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=-$\frac{1}{{1+{x^2}}}$,則不等式f(2x-1)>f(-1)的解集是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.因發(fā)生交通事故,一輛貨車上的某種液體潰漏到一池塘中,為了治污,根據(jù)環(huán)保部門的建議,現(xiàn)決定在池塘中投放一種與污染液體發(fā)生化學(xué)反應(yīng)的藥劑,已知每投放a(1≤a≤4,a∈R)個單位的藥劑,它在水中釋放的濃度y(克/升)隨著時間x(天)變化的函數(shù)關(guān)系式近似為y=a•f(x),其中f(x)=$\left\{{\begin{array}{l}{\frac{16}{8-x}-1({0≤x≤4})}\\{5-\frac{1}{2}x({4<x≤10})}\end{array}}$.若多次投放,則某一時刻水中的藥劑濃度為各次投放的藥劑在相應(yīng)時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當(dāng)水中藥劑的濃度不低于(克/升)時,它才能起到有效治污的作用.
(1)若一次投放4個單位的藥劑,則有效治污時間可達幾天?
(2)若第一次投放2個單位的藥劑,6天后再投放a個單位的藥劑,要使接下來的4天中能夠持續(xù)有效治污,試求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)是定義域為R的奇函數(shù),且當(dāng)x≥0時,f(x)=x2-4x.
(1)求f(-3)+f(-2)+f(3)的值;
(2)求f(x)的解析式,并寫出函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若x,y滿足約束條件$\left\{\begin{array}{l}x-2≥0\\ x-y≤0\\ x+y-6≤0\end{array}\right.$,那么z=2x+y的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖1,直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=$\frac{1}{2}$BC=1,E是底邊BC上的一點,且EC=3BE.現(xiàn)將△CDE沿DE折起到△C1DE的位置,得到如圖2所示的四棱錐C1-ABED,且C1A=AB.
(Ⅰ)求證:C1A⊥平面ABED;
(Ⅱ)若M是棱C1E的中點,求直線BM與平面C1DE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案