20.已知隨機變量ξ的概率分布列為:
ξ012
P$\frac{1}{4}$$\frac{1}{2}$$\frac{1}{4}$
則Eξ=1,Dξ=$\frac{1}{2}$.

分析 利用隨機變量ξ的概率分布列的性質(zhì)能求出Eξ和Dξ.

解答 解:由隨機變量ξ的概率分布列,知:
Eξ=$0×\frac{1}{4}+1×\frac{1}{2}+2×\frac{1}{4}$=1,
Dξ=(0-1)2×$\frac{1}{4}$+(1-1)2×$\frac{1}{2}$+(2-1)2×$\frac{1}{4}$=$\frac{1}{2}$.
故答案為:1,$\frac{1}{2}$.

點評 本題考查離散型隨機變量的分布列、數(shù)學(xué)期望、方差的求法,解題時要要認真審題,注意隨機變量ξ的概率分布列的性質(zhì)的合理運用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)$z=\frac{i}{1+i}-\frac{1}{2i}$(其中i是虛數(shù)單位)的虛部為( 。
A.$\frac{1}{2}$B.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為吸引顧客,某公司在商場舉辦電子游戲活動.對于A,B兩種游戲,每種游戲玩一次均會出現(xiàn)兩種結(jié)果,而且每次游戲的結(jié)果相互獨立,具體規(guī)則如下:玩一次游戲A,若綠燈閃亮,獲得50分,若綠燈不閃亮,則扣除10分,綠燈閃亮的概率為$\frac{1}{2}$;玩一次游戲B,若出現(xiàn)音樂,獲得60分,若沒有出現(xiàn)音樂,則扣除20分(即獲得-20分),出現(xiàn)音樂的概率為$\frac{2}{5}$.玩多次游戲后累計積分達到130分可以兌換獎品.
(1)記X為玩游戲A和B各一次所得的總分,求隨機變量X的分布列和數(shù)學(xué)期望;
(2)記某人玩5次游戲B,求該人能兌換獎品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+ax+2lnx,g(x)=$\frac{1}{2}{x^2}$+kx+(2-x)lnx-k,k∈Z.
(1)當(dāng)a=-3時,求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時,若對任意x>1,都有g(shù)(x)<f(x)成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的離心率為$\frac{5}{3}$,則其漸近線方程為( 。
A.2x±y=0B.x±2y=0C.3x±4y=0D.4x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=log2x,x∈[1,8],則不等式1≤f(x)≤2成立的概率是( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=ax-\frac{x}-2lnx$,對任意實數(shù)x>0,都有$f(x)=-f(\frac{1}{x})$成立.
(Ⅰ)對任意實數(shù)x≥1,函數(shù)f(x)≥0恒成立,求實數(shù)a的取值范圍;
(Ⅱ)求證:$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{n^2}>2ln\frac{2n}{n+1}-\frac{3}{4}$,n≥2,n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點A(-1,1),B(1,2),C(2,3),且$\overrightarrow{AB}⊥({\overrightarrow{BC}+λ\overrightarrow{AC}})$,則λ=( 。
A.$\frac{3}{8}$B.$-\frac{3}{8}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期是π,將函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個單位長度后得到函數(shù)圖象過點P(0,1),則函數(shù)f(x)=sin(ωx+φ)( 。
A.有一個對稱中心($\frac{π}{12}$,0)B.有一條對稱軸x=$\frac{π}{6}$
C.在區(qū)間[-$\frac{π}{12}$,$\frac{5π}{12}$]上單調(diào)遞減D.在區(qū)間[-$\frac{π}{12}$,$\frac{5π}{12}$]上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案