12.曲線y=-x3+2x+3在點(1,4)處的切線的斜率為( 。
A.-1B.1C.-$\sqrt{3}$D.$\sqrt{3}$

分析 求出原函數(shù)的導(dǎo)函數(shù),進一步求出函數(shù)在x=1時的導(dǎo)數(shù)值得答案.

解答 解:由y=-x3+2x+3,得y′=-3x2+2,
∴$y′{|}_{x=1}=-3×{1}^{2}+2=-1$.
即曲線y=-x3+2x+3在點(1,4)處的切線的斜率為-1.
故選:A.

點評 本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,過曲線上某點處的切線的斜率,就是函數(shù)在該點處的導(dǎo)數(shù)值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知一袋有2個白球和4個黑球.
(1)采用不放回地從袋中摸球(每次摸一球),4次摸球,求恰好摸到2個黑球的概率;
(2)采用有放回從袋中摸球(每次摸一球),4次摸球,令 X 表示摸到黑球次數(shù),求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.集合A={x|0<x≤5,且x∈N*},在集合A中任取2個不同的數(shù),則取出的2個數(shù)之差的絕對值不小于2的概率是( 。
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f (x)=$\left\{\begin{array}{l}ln(4x+2)-5,x≥0\\ ln(2-4x)-5,x<0\end{array}\right.$,若關(guān)于 x 的不等式f(ax-2)>f(x-3)在[4,5]上有解,則實數(shù)a的取值范圍是($\frac{4}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)i為虛數(shù)單位,復(fù)數(shù)z=1-i,則$\frac{2}{z}$+z=( 。
A.1B.2C.-iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標(biāo)準(zhǔn)0〜3.5,用水量不超過a的部分按照平價收費,超過a的部分按照議價收費).為了較為合理地確定出這個標(biāo)準(zhǔn),通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖.
(1)由于某種原因頻率分布直方圖部分數(shù)據(jù)丟失,請在圖中將其補充完整;
(2)用樣本估計總體,如果希望80%的居民每月的用水量不超出標(biāo)準(zhǔn)0〜3.5,則月均用水量的最低標(biāo)準(zhǔn)定為多少噸,請說明理由;
(3)從頻率分布直方圖中估計該100位居民月均用水量的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(x-a)|x|是定義在R上的奇函數(shù),其中a∈R.
(1)求a的值;
(2)若不等式mx2+3m<f(x)對任意x∈[-3,3]成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系中,已知點A(0,-2),B(0,4),動點P(x,y)滿足$\overrightarrow{PA}$•$\overrightarrow{PB}$-y2+8=0.
(1)求動點P的軌跡方程;
(2)設(shè)(1)中所求的軌跡與直線y=x+2交于C、D兩點,求證:OC⊥OD(O為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{3}$cos2x-2sinxcosx-$\sqrt{3}$sin2x.
(1)求函數(shù)f(x)的最小正周期及對稱軸;
(2)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值及所對應(yīng)的x值.

查看答案和解析>>

同步練習(xí)冊答案