11.已知x,y的取值如表所示:
x23456
y97865
如果y與x呈線性相關(guān),且線性回歸方程為$\widehat{y}$=-$\frac{3}{4}$x+$\widehat$,則$\widehat$=( 。
A.$\frac{21}{2}$B.10C.11D.$\frac{43}{4}$

分析 根據(jù)表中數(shù)據(jù)計算$\overline{x}$、$\overline{y}$,代入線性回歸方程求出$\widehat$的值.

解答 解:根據(jù)表中數(shù)據(jù),計算$\overline{x}$=$\frac{1}{5}$×(2+3+4+5+6)=4,
$\overline{y}$=$\frac{1}{5}$×(9+7+8+6+5)=7
代入線性回歸方程$\widehat{y}$=-$\frac{3}{4}$x+$\widehat$中,
得$\widehat$=7+$\frac{3}{4}$×4=10.
故選:B.

點評 本題考查了線性回歸方程的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費(fèi)用x(萬元)2345
銷售額y(萬元)26394954
根據(jù)如表可以回歸方程y=bx+a中的b為9.4,據(jù)此模型預(yù)報廣告費(fèi)用為6萬元時銷售額為65.5萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角α的終邊經(jīng)過點($\frac{3}{5}$,-$\frac{4}{5}$),則α是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用鐵絲制作一個面積為1m2的直角三角形鐵框,鐵絲的長度最少是( 。
A.5.2mB.5mC.4.8mD.4.6m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若f(x)=Asin(ωx+φ)+3(ω>0,|φ|<π)對任意實數(shù)t,都有f(t+$\frac{π}{3}$ )=f(-t+$\frac{π}{3}$ ).記g(x)=Acos(ωx+φ)-2,則g($\frac{π}{3}$)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,角A、B、C的對邊分別為a、b、c,若2bsinB-csinC=asinA,3ac=2b2,則cos2B等于(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{7}{9}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2)
(1)求($\overrightarrow{a}$$-\overrightarrow$)•($\overrightarrow{a}$$+2\overrightarrow$)
(2)若向量$\overrightarrow{a}$$+λ\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)(1+2x)n=a0+a1x+a2x2+…+anxn,且(1+2x)n的展開式中第2項的二項式系數(shù)為20,則a1+a2+…+an的值為(  )
A.310-1B.310C.320-1D.320

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.為了研究學(xué)生性別與是否喜歡數(shù)學(xué)課之間的關(guān)系,得到列聯(lián)表如下:
喜歡數(shù)學(xué)不喜歡數(shù)學(xué)總計
4080120
40140180
總計80220300
并計算:K2≈4.545
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
參照附表,得到的正確結(jié)論是( 。
A.有95%以上把握認(rèn)為“性別與喜歡數(shù)學(xué)課有關(guān)”
B.有95%以上把握認(rèn)為“性別與喜歡數(shù)學(xué)課無關(guān)”
C.在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“性別與喜歡數(shù)學(xué)課有關(guān)”
D.在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“性別與喜歡數(shù)學(xué)課無關(guān)”

查看答案和解析>>

同步練習(xí)冊答案