18.為了研究學(xué)生性別與是否喜歡數(shù)學(xué)課之間的關(guān)系,得到列聯(lián)表如下:
喜歡數(shù)學(xué)不喜歡數(shù)學(xué)總計(jì)
4080120
40140180
總計(jì)80220300
并計(jì)算:K2≈4.545
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
參照附表,得到的正確結(jié)論是( 。
A.有95%以上把握認(rèn)為“性別與喜歡數(shù)學(xué)課有關(guān)”
B.有95%以上把握認(rèn)為“性別與喜歡數(shù)學(xué)課無關(guān)”
C.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“性別與喜歡數(shù)學(xué)課有關(guān)”
D.在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“性別與喜歡數(shù)學(xué)課無關(guān)”

分析 根據(jù)觀測(cè)值K2,對(duì)照臨界值表即可得出結(jié)論.

解答 解:根據(jù)列聯(lián)表計(jì)算:K2≈4.545,
對(duì)照臨界值表知4.545>3.841,
所以有95%以上的把握認(rèn)為“性別與喜歡數(shù)學(xué)課有關(guān)”.
故選:A.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知x,y的取值如表所示:
x23456
y97865
如果y與x呈線性相關(guān),且線性回歸方程為$\widehat{y}$=-$\frac{3}{4}$x+$\widehat$,則$\widehat$=( 。
A.$\frac{21}{2}$B.10C.11D.$\frac{43}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在極坐標(biāo)系中,直線θ=$\frac{π}{6}$(ρ∈R)截圓ρ=2cos(θ-$\frac{π}{6}$)所得弦長(zhǎng)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知sin(α+β)=$\frac{1}{2}$,sin(α-β)=$\frac{1}{3}$,則下列結(jié)論正確的是①④.
①sinαcosβ=5cosαsinβ  
②sin2α=$\frac{2\sqrt{2}+\sqrt{3}}{6}$
③若α,β是直角三角形的兩個(gè)銳角,則tan(α-β)的值為$\frac{2\sqrt{5}}{5}$
④若α,β是一個(gè)三角形的兩個(gè)內(nèi)角,則tan(α-β)的最大值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足$\frac{\overline{Z}}{1+i}$=i2017,其中i為虛數(shù)單位,則Z=( 。
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)g(x)=x2+ln(x+a),其中a為常數(shù).
(1)當(dāng)a=0時(shí),求g(x)在(1,1)處的切線方程;
(2)討論函數(shù)g(x)的單調(diào)性;
(3)若g(x)存在兩個(gè)極值點(diǎn)x1,x2,求證:無論實(shí)數(shù)a取何值都有$\frac{g({x}_{1})+g({x}_{2})}{2}$>g($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知角α的終點(diǎn)經(jīng)過點(diǎn)P(3,-$\sqrt{3}$),則tanα的值是( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某教師有相同的語文參考書3本,相同的數(shù)學(xué)參考書4本,從中取出4本贈(zèng)送給4為學(xué)生,每位學(xué)生1本,則不同的贈(zèng)送方法共有(  )
A.15種B.20種C.48種D.60種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知P點(diǎn)的柱坐標(biāo)是(2,$\frac{π}{4}$,1),點(diǎn)Q的球面坐標(biāo)為(1,$\frac{π}{2}$,$\frac{π}{4}$),根據(jù)空間坐標(biāo)系中兩點(diǎn)A(x1,y1,z1),B(x2,y2,z2)之間的距離公式|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}+({z}_{1}-{z}_{2})^{2}}$,可知P、Q之間的距離為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{5}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案